

Enhancing Non-determinism in Operating Systems

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

by

Morgon Kanter

Thayer School of Engineering

Dartmouth College

Hanover, New Hampshire

October 2013

Examining Committee:

Chairman_______________________

Stephen Taylor, PhD

Member________________________

Sergey Bratus, PhD

Member________________________

George Cybenko, PhD

Member________________________

Steve Chapin, PhD

F. Jon Kull

Dean of Graduate Studies

 ii

Abstract

Computer security has come a long way since the days of the first Internet worm. With

the spreading and commercialization of the Internet, the stakes have gotten higher.

Viruses existed and spread before most computers were online, but as global networking

has spread an interesting new phenomenon has arisen: homogenous computing. Vast

swathes of internet-connected computers can be placed into distinct categories such as

ñLinux 3.1 machinesò and ñWindows 7 machinesò, with each category having

vulnerabilities that work across the entire class. Thus the Internet has acted as a

vulnerability amplifier: if you infect one, you can infect many -- it has never been easier

to infect a large number of systems. This thesis aims to raise the difficulty for attackers to

spread exploits easily: increasing the failure rates associated with using the same exploit

across multiple machines, denying surveillance of target machines and binary codes,

denying persistence on a target system once it has been exploited, and eliminating

common exploitation techniques. These goals are accomplished by enhancing non-

determinism in operating systems: utilizing a hypervisor to refresh microkernels and add

restrictions on their operation, adding diversity to microkernels and user processes, and

adding camouflage to network protocols. Collectively these techniques serve to make

each running system unique, unpredictable, and difficult to identify.

 iii

Preface

Thanks Steve, as well as fellow group members Colin, Jason, Mike, Rob, and Steve. And

of course, my wife Sam.

This research is supported by the Defense Advanced Research Projects Agency as part of

the MRC program under contract FA8750-11-2-0257. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon. The views and conclusions contained

herein are those of the authors and should not be interpreted as necessarily representing

the official policies or endorsements, either expressed or implied, of the Defense

Advanced Research Projects Agency (DARPA) or the U.S. Government.

 iv

Table of Contents

Abstract .. ii

Preface.. iii

Table of Contents ... iv

List of Tables ... vii i

List of Figures .. ix

List of Programs ...x

1. Overview ...1

1.1 Problem ...1

1.2 Hypothesis ...1

1.3 Approach ..1

1.4 Contributions ...2

1.5 Metrics and Analysis ...3

1.6 Conventions ...4

1.7 Outline of the Thesis ..4

2. Core Ideas and Related Work ..6

2.1 Threat Model ..6

2.2 Vulnerabilities and Vulnerability Amplification ...7

2.3 Stealth and Persistence ...9

2.4 Reverse Engineering ..10

2.5 Protection Mechanisms ..11

2.6 Non-Determinism and Diversity ..12

 v

2.7 Camouflage ..16

3. Gold-Standard Refresh...18

3.1 Hypervisor Design ...22

3.2 Goal 1: Diskless, Read-only Bootstrapping ...23

3.2.1 The MBR Bootloader ..25

3.2.2 The Stage-1 Bootloader ..26

3.2.3 The Stage-2 Bootloader ..27

3.2.4 PXE Boot ..28

3.3 Goal 2: Kernel Refresh, Denying Persistence ..29

3.3.1 Enabling Virtualization ...29

3.3.2 The Hypervisor Main Loop ..30

3.3.3 Kernel Environment ..32

3.4 Goal 3: MULTICS-style Protections Applied to Kernels ..34

3.5 Goal 4: Processor State Protection ...38

3.6 Attack Surface Minimization ...40

3.7 Supporting Legacy Operating Systems ..41

3.8 Summary ..42

4. Diversity through Compile-Time Techniques ...43

4.1 Implementation ..44

4.1.1 The Padding Transformation ..44

4.1.2 The Ordering Transformation ...46

4.2 Quantifying Diversity ..47

4.2.1 Entropy of the Padding Transformation ...48

 vi

4.2.2 Entropy of the Ordering Transformation ..50

4.2.3 Joint Entropy of the Transformations ...51

4.3 Performance Impact ...55

4.4 Adoption Challenges ..57

4.5 Summary ..57

5. Diversity through Runtime Techniques ...59

5.1 ELF Preliminaries ..59

5.1.1 Binary Layout ...59

5.1.2 The Symbol Table ...61

5.1.3 Relocations ..62

5.2 Implementation ..63

5.3 Analysis..67

5.3.1 Performance Impact ..68

5.3.2 Code Size Impact ..70

6. A Hybrid Technique ..71

6.1 Replication ...73

6.2 Discussion ..74

6.3 Summary ..75

7. Hiding by Camouflage ...77

7.1 Implementation ..78

7.1.1 Application Layer Camouflage ...80

7.1.2 Network Layer Camouflage ..84

7.2 Lessons Learned...87

 vii

7.3 SMTP Session Example ...93

7.4 Results ..95

7.5 Costs and Future Work ..96

7.6 Summary ..97

8. Conclusions ..99

8.1 The Four Aspects ...99

8.2 Future Work ...100

Appendix A. Virtual Memory and Processor State in x86 ..102

Appendix B. VMCS Fields ..112

References ..118

 viii

List of Tables

Table 1: Code size ..40

Table 2: Padding entropy ...50

Table 3: All combinations of two instructions with two transformations52

Table 4: Entropy estimation of combined transformations..54

Table 5: Minimal entropy estimation for combined transformations55

Table 6: Average code size increase (in kilobytes and %) ..57

Table 7: Flags in Control Register 0 ..109

Table 8: Flags in Control Register 4 ..110

Table 9: Flags in EFER ..111

Table 10: Pin-Based VM Execution Controls field ...114

Table 11: Primary Processor-Based VM Execution Controls field115

Table 12: Secondary Processor-Based VM Execution Controls field116

 ix

List of Figures

Figure 1: Exploitation threat model ...6

Figure 2: The Bear operating system layers ..19

Figure 3: Bootstrapping the hypervisor ...24

Figure 4: Illustration of the IBM-Compatible MBR and partition table25

Figure 5: Illustration of Extended Page Tables..36

Figure 6: Function with two vacuous-padded variants ..46

Figure 7: Function layout after compiling and linking ..47

Figure 8: Benchmark results for vacuous code padding ..56

Figure 9: ELF binary, section view ..61

Figure 10: Example binary and corresponding loader diversification64

Figure 11: Control flow within same diversity unit ...65

Figure 12: Control flow between two different diversity units....................................65

Figure 13: Hybrid diversity system..71

Figure 14: Overview of system internals ...79

Figure 15: A packetôs path through the camouflager ...80

Figure 16: State machine representation of SMTP common path82

 x

 List of Abstract Programs

Program 1: Enabling virtualization ..30

Program 2: The hypervisor main loop ...31

Program 3: Handling memory violations ...38

Program 4: The padding transformation ..46

Program 5: The diversifying loading process ..67

 1

Chapter 1: Overview

1.1 Problem

How can we increase attacker workload to reduce the incidence of

computer network attacks against critical infrastructure?

1.2 Hypothesis

A radical increase in non-determinism within operating systems can

require increased attacker time, effort, and failure, requiring increased

levels of attacker sophistication.

1.3 Approach

This thesis introduces non-determinism through four core mechanisms:

¶ Gold-standard Refresh: Random refresh of potentially compromised

system components (e.g. microkernel, device drivers, etc) to remove an

adversaryôs ability to persist over long durations; this also has the effect of

invalidating surveillance information associated with the operating system

signature, essential in determining the available vulnerabilities.

¶ Compile-Time Diversity: Introduction of non-determinism into source-

code at compile time to throttle vulnerability amplification, ensuring that

the same vulnerability cannot be used in multiple copies of the code.

¶ Run-Time Diversity: Dynamic replication and randomization of code at

load time refresh to undermine reverse engineering and further invalidate

surveillance.

¶ Camouflage: Disguising an operating system to appear as an alternative

 2

system, with different vulnerabilities, to complicate system identification.

The combination of these techniques produces a new form of operating system

that increases attacker workload over multiple complementary dimensions

making it significantly more difficult to determine the vulnerabilities present on a

system, apply the same attack to multiple hosts, and establish a long-lived

presence on a system to achieve effects.

1.4 Contributions

The core contributions of this thesis are:

¶ A novel, minimalist hypervisor capable of non-deterministically refreshing

and diversifying a hosted kernel; kernels may in turn use the same

techniques to refresh user code and potentially compromised device

drivers [1].

¶ Compile-time techniques for introducing static diversity into operating

systems and user code [2].

¶ Run-time techniques that add temporal diversity when combined with

refresh [3].

¶ A hybrid approach that combines compile-time and run-time diversity

with replication to radically increase the degree of non-determinacy in

systems. This approach has modest overhead in performance and code size

[3].

¶ Analytical models that quantify the level of non-determinism induced by

diversity [2, 3].

 3

¶ Application layer techniques that camouflage servers by modifying their

network traffic signatures [4].

These systems and techniques have been demonstrated in proof-of-concept

implementations and exemplars. The hypervisor has been implemented on multi-

core blade servers and Dell XPS workstations, supporting both a custom

microkernel and the BSD operating system. The compile-time techniques have

been implemented as a Clang compiler plugin and demonstrated by diversifying

the microkernel, an industrial strength web server (lighttpd), and the SPEC

benchmark suite. The run-time techniques have been incorporated into the

hypervisor and microkernel loader used to execute the microkernel and user

processes. Finally, the camouflage techniques have been used to circumvent

common network scanners, such as nmap [5] and Nessus [6], disguising a

Microsoft Exchange running on Windows 2008 Server as Sendmail running on

Linux 2.6.

1.5 Metrics and Analysis

Unfortunately, it is not practical to directly assess the increase in attacker

workload, as it is dependent on a number of subjective factors that include:

¶ The available manpower and level of expertise of the attacker.

¶ The creativity of the attacker.

¶ The type and level of vulnerability of the target system.

¶ The availability of multiple access paths, e.g. remote exploits, privilege

escalations, supply chain access, RF paths, etc.

 4

As an alternative, this thesis therefore focuses on the degree of unpredictability

induced in systems and quantifies this through the analytical use of entropy.

Unfortunately, not all of the techniques admit to direct measurement and thus

constructive argument is used in their place where appropriate. These arguments

are based on the added steps required to achieve a point of presence, or the

increase in technical sophistication required to overcome a particular barrier.

1.6 Conventions

 At several points throughout this thesis, abstract code is used to describe a

process. In this abstract code, a BOLD, ALL CAPS word represents an assembly

instruction. A ñ<-ñ mark represents the storing of some value. A line beginning

with a ñ//ò is a descriptive comment on the current stage of the process.

1.7 Outline of the Thesis

The structure of the thesis is divided into seven chapters:

Chapter 2 introduces the threat model, core ideas, and related research

associated with vulnerabilities and their mitigation. This serves to provide

background and motivation for the remainder of the thesis.

Chapter 3 describes the hypervisor, created as a part of this thesis. It

describes the design philosophy and the specific details of its inner workings,

along with bootstrapping details. It also introduces the fundamental protections

provided by the hypervisor to running kernels.

Chapter 4 describes the compile-time techniques developed in the thesis

and analyzes the level of diversity that can be obtained along with the associated

overhead.

 5

Chapter 5 describes the run-time techniques incorporated into the loader

and integrated within the hypervisor and kernel. These techniques are contrasted

with the compile-time techniques in Chapter 4 and analysis quantifies the gain in

diversity and performance.

Chapter 6 develops a hybrid model that combines the methods in Chapters

4 and 5 and analyses the combined technique. Code replication is then added to

further increase non-determinism.

Chapter 7 introduces network camouflage and describes how it operates

on the system network stack.

Chapter 8 concludes the thesis, mapping out directions for future research

and lessons learned.

 6

Chapter 2: Core Ideas and Related Work

2.1 Threat Model

In order to provide context for the work presented in this thesis, it is useful

to provide a general threat model for network attacks involving remote control [7].

The model used here is presented in Figure 1 and combines typical activities

taken from a broad variety of attack classes. The threat may involve several steps

including surveillance to determine if a vulnerability exists [8], use of an

appropriate exploit or other access method to establish an implant [8], privilege

escalation where possible [9], removal of exploit artifacts, and hiding behavior

[10]. Surveillance may involve obtaining a copy of the targets binary code and

using reverse engineering [11,12] or fuzzing [13] to locate additional

vulnerabilities to facilitate a broad range of attack vectors, including return

oriented programming [14]. The implant then persists for a time sufficient enough

to carry out some malicious effect, obtain useful information, or propagate

intrusion to other systems.

Figure 1: Exploitation threat model.

 7

Unlike the time to execute an exploit, the time spent in surveillance and

persistence may range from minutes to months or even years depending upon the

intended effect. Moreover, the presence of an intrusion may never be detected by

network defenses but instead may be recognized indirectly due to either a

deviation from expected behavior, or may be derived from intelligence sources.

2.2 Vulnerabilities and Vulnerability Amplification

The history of network intrusions, employing differing elements of the

model presented in Section 2.1, has been a continual arms race between defenders

and attackers: Vulnerabilities are revealed in hardware and software systems,

attackers develop exploit techniques to take advantage of them, eventually the

attacks are discovered and defenders develop appropriate protections and patches.

Subsequently, more advanced exploits that bypass the protections are introduced

and the cycle begins anew.

Buffer overflow attacks provide the most widely recognized example of

this pattern [15]. A complete description of the technique, along with how to

identify a vulnerability and exploit it, can be found in [16]. The essence of the

idea is to overrun a programming buffer with unexpected input so as to cause

installed software to make an unintended transfer of control; typically to

implanted attack code (often termed ñshell codeò). Since discovery of this form of

attack, a variety of solutions1 have been developed to specifically mitigate this

1 A survey of available protections, as well as more details on buffer overflow techniques, can be

found in [17].

 8

particular form of vulnerability. Intel, for example, introduced the no-execute bit

for page tables, also known as Data Execution Prevention (DEP). This concept,

taken from the MULTICS [18] system, provides a mechanism that allows

operating system developers to ensure that memory is either writable or

executable, but never both simultaneously. There are not only hardware solutions

ï software solutions have also been invented, such as runtime size checks for

buffers utilized on the stack [19].

Unfortunately, the advent of DEP and other solutions led to the

development of alternative exploitation techniques, which bypass the protection.

Some of the first attacks designed against DEP merely directed the running

process to call functions provided by the operating system to disable the

protections; they then proceeded with the classic buffer overflow [20]. These

functions seem insecure at first glance, but are actually useful: Some applications

require the same piece of memory to be both writable and executable. One such

application is a just-in-time compiler: It compiles (writes) a high-level

programming language to machine code and then executes it. Just like a binary

loaded from disk, the compiled code must be stored in memory at some location

before it is placed onto the processor for execution.

Eventually, attacks that bypass DEP execution prevention were

generalized. If a system function for disabling protections could be called, why

not call some other library function instead? This became known as the return-to-

libc attack [21]. It then became clear that if an arbitrary library function could be

invoked, other chunks of pre-existing code could also be used. These chunks need

 9

not necessarily be complete functions, but rather small assembly fragments

already loaded onto the system. These chunks, known as gadgets [22], can

perform some small amount of computation (add, multiply, compare), and then

redirect system control flow based on computed data written in the process

address space. The most prevalent opportunity to transfer control was provided by

the ret (return) assembly instruction available throughout operating system

images to return from functions. This instruction uses the system stack to

determine which address the processor should jump to, a convenient location to

store redirections. This form of exploit was named return-oriented programming

(ROP) [22]. Although it may not immediately appear particularly useful, a large

codebase such as the C programming library (libc), linked to every user process

on the system, contains a sufficient number of gadgets to be Turing-complete [23],

allowing any arbitrary program to be executed. A large set of gadgets is not even

required for many common exploitation tasks, such as the disabling DEP, and

even programs as small as /bin/true (without use of the linked C library) can be

exploited in this fashion [23].

Unfortunately, the fact that relatively few varieties of operating systems

are available world-wide, compared to the number of installed systems, amplifies

the impact of these vulnerabilities: A single exploit can often be employed against

a huge number of unpatched systems. Moreover, the increasing prevalence of

cloud computing tends to enhance this amplification by radically diminishing the

variety of installed system variants.

2.3 Stealth and Persistence

 10

Once a vulnerability has been discovered and an exploit developed, it is

possible to establish a remote point-of-presence, similar to a remote shell. A

common next step is to remove the forensic trail associated with access by

deleting files, modifying registry keys, etc., and hide any on-host activity. This

job is often performed by a rootkit ï a program delivered by the exploit and

operated unwittingly by the infected machine. One of the oldest stealth techniques

is to bundle, with the rootkit, programs that replace common system

administration programs [10]. For example, the ps program lists all processes

running on a system, but the rootkitôs version of ps would fail to report the

presence of the rootkit. This technique eventually gave way to returning false

values for system calls that ps would use to gather the list of processes, bypassing

the need for replacement programs [10].

Once a rootkit is resident on the system, how does it persist? If it exists

purely in volatile memory, such as a modification to the running kernel code, it

will be removed upon a system reboot. The rootkit thus must have some other

residence in non-volatile storage. The hard disk provides the oldest known

example [24], but some hardware contains non-volatile memory that can be

modified with proper system privileges [25]. To survive any kind of refresh like a

reboot without the system being exploited anew, the rootkit must utilize one of

these devices.

2.4 Reverse Engineering

It is possible that an attacker may have access to a copy of the source code

for some or all of a system, it might be open source code, or might be provided by

 11

an insider. Alternatively, the point-of-presence established in Section 2.1 might

be used to extract a copy of the running binary code directly from memory.

Having obtained the source code, it is then possible to reverse engineer it

to discover vulnerabilities and develop additional exploits. Buffer overflows and

other memory corruption attacks require knowledge of the distance between the

vulnerable data and the interesting parts of the stack. Return-to-libc attacks

require knowledge of the location in memory of the desired functions. Return-

oriented programming requires knowledge of desirable gadgets. All of this

information can be discovered either through either static analysis -- offline

disassembly and reverse engineering the addresses at rest -- or dynamic analysis --

instrumenting and observing the code while it is running. This analysis can also

provide insights into how the attacker might best hide their tracks, or interrupt and

resume normal operation of the system via important addresses in the code. A

wide variety of tools are available to conduct this analysis, including simple

disassemblers like objdump [26] and complex tools such as IDA Pro [11].

2.5 Protection Mechanisms

Many of the fundamental concepts now used to protect operating systems

are derived from the engineering principals of separating concerns and

encapsulation embodied in the MULTICs operating system [18]. This resulted in

several innovations including the division of an operating system into layers, or

protected rings, through hardware mechanisms that separate user processes from

the system kernel and each other. MULTICôs also included the concept of

read/write/execute protection bits on memory segments, where each segment

 12

maintains independent access controls and a fault is generated if software violates

the protections. Read and write access controls subsequently became

commonplace in hardware platforms such as the Intel x86 processors. Execute

protection has only recently regained currency through the x86-64 platform via

the introduction of a no-execute bit into 64-bit page table entries [27].

Although techniques have been found to bypass basic protections on

occasion, their utility as an organizing principal and a first line of defense cannot

be overstated. With the advent of return-to-libc attacks and return-oriented

programming, the presence of basic protections allowed the development of

techniques to specifically target these advancements in exploitation independently.

For example, compiler-techniques were developed to mitigate return oriented

programming by scrubbing usable gadgets out of the assembly process [28-29].

The continual arms race between exploit and mitigation calls into question

the entire approach associated with detecting intrusions or reacting to discovery,

through sensors, patches, and defense tool rules. In this situation, the defender is

always forced to react to the attacker and takes few proactive steps to undermine

an attackerôs actions before they are known. Instead, this thesis proposes to focus

on increasing attacker workload by complicating each of the component activities

encapsulated in the thread model.

2.6 Non-Determinism and Diversity

Cohen [30] and Forrest et al [31] have discussed ideas for using non-

determinism to prevent exploitation. In addition, Forrest has implemented a basic

stack frame space randomizer which, while minimal, was sufficient to disrupt

 13

many buffer overflow exploits. Unfortunately, no concrete metrics are provided to

quantify the level of effective diversity.

The most prominent approach that has evolved is Address Space Layout

Randomization (ASLR), developed by the Linux PaX team [32] and later used in

many other operating systems including variants of Windows. This technique

introduces diversity by randomly relocating the base address of libraries, program

text, stack, and heap, at runtime, though it does not attempt to perform any

reordering or randomization within these memory segments. This removes the

ability for attackers to statically pre-determine the address of functions and

gadgets used to build exploits or arbitrary code fragments ï denying surveillance,

rather than eliminating the vulnerabilities themselves.

ASLR is believed to be effective against both return-to-libc attacks and

return-oriented programming. Unfortunately, a minimal level of entropy is

required to protect against brute-force attacks [33]. Early analytical work to

quantify the impact on attacker workload has already been conducted; it

concludes that approximately 16-bits of entropy, corresponding to 65,536 unique

code addresses within a process image, are required to protect against brute force

attacks within reasonable timeframes i.e. 20 minutes. There also exist methods to

eliminate address space randomness through techniques that bypass the ASLR

implementation altogether using specially crafted format strings [34]. It is

interesting to note that ASLR was developed before the advent of return-oriented

programming as a general mitigation against static analysis. This speaks well of

the general approach of introducing diversity to deny surveillance.

 14

Other work has also been performed in the space of diversity: Instruction

Set Randomization encrypts the executable code and grants a level of entropy

equal to the strength of the encryption [35]. Unlike the research described here,

this approach requires architecture support for some form of emulation [36], or

virtualization [37]. The diversity approach described in this thesis has none of

these restrictions and can be strengthened by additional techniques including

memory encryption [7,38], hardware hiding [39], and nondeterministic refresh;

however, it does require access to source code.

Tanenbaum has used an alternative approach to protect kernel data

structures [40]. Unfortunately, his work uses compartmentalization and

modularization of code limited to microkernel designs. While this research

involves a microkernel, it targets more than just kernel data structures; the ideas

can also be applied to user processes and device drivers. Device drivers are

especially problematic, as they contain error rates up to seven times higher than

the rest of kernel code [41].

Several authors have examined the use of diversity to directly modify

binaries on disk. For example, Pappas et al [42] developed a tool that would

diversify compiled binaries by modifying instructions: this removes the

immediate vulnerability (while introducing new gadgets) and denies offline

surveillance, but would not protect against an attacker that successfully obtains a

copy of the diversified binary; the research described in this thesis would also

defend against such surveillance. Similarly, Kil et al [43] developed a tool to

diversify binaries by relocating segments and reordering within segments, but the

 15

code within the segments is unchanged. This work has the same weakness as the

tool developed by Pappas et al.

Some researchers have examined diversity, not to deny surveillance, but to

specifically disrupt return-oriented programming. In an upcoming paper at the

2013 International Symposium on Code Generation and Optimization, Larsen et

al present a diversification scheme at the compiler level that modifies the

instruction generation algorithm to remove gadgets, entirely preventing their

emission by the compiler. This has no value in denying surveillance, and instead

only targets return-oriented programming. This thesis does not perform any

gadget removal: instead, it aims to increase the unpredictability of all addresses.

This disrupts the positioning of gadgets, denying surveillance, but does not itself

change the instruction stream or program semantics.

Other diversification techniques have been introduced that are similar to

the work described in Chapter 4 and 5. Kil et. al. include a similar method of

function reordering in their own binary rewriting tool [43]. The method described

in this thesis, on the other hand, implements this functionality directly in the

linker (for Chapter 4) and at runtime (for Chapter 5) to deny surveillance. kGuard

[44] uses a similar technique of padding the start of functions, an operation used

in this thesis and described in Chapter 4. However, they only do this to protect

and diversify the kernel, not user applications. Furthermore they use a NOP sled

to change address locations. The work described in Chapter 4 specifically uses

random data, so that any jump attempt will likely crash immediately. While

ASLR by default does not randomize within the text segment, this feature was

 16

eventually introduced with the Code Islands technique in [45]. This utilizes

several similar features to our run-time diversity system; however, the work

described in Chapter 5 is not bound by the legacy requirements of the Linux

operating system and thus does not suffer the same performance penalties with

dynamic linking; it is also used to protect the operating system itself.

2.7 Camouflage

One method of surveillance is to use a network scanner, such as nmap [5]

or Nessus [6]. These scanners can detect which software and operating systems

are running on target machines, as well as their specific versions. This

fingerprinting effectively provides an attacker with a roadmap of how to exploit

the machine. This thesis presents a method for denying surveillance directly

through network camouflage.

Fingerprinting is possible by virtue of the differences in network- and

application-layer protocol implementations for different operating systems. The

protocol specifications typically leave many implementation details up to the

developer. This allows for multiple implementation strategies and ideas to be used

in alternative products. When these design details diverge between competing

systems, the differences can be observed by merely using the protocol. Nmap and

Nessus both exploit the differences in implementation details for their

fingerprinting process. For example, for operating system detection they have

databases specifying which details are expected on which system. By examining

the response to TCP/IP traffic, they discern which operating system the responses

 17

must have originated from. Similar systems exist for application-layer protocols

in Nessus [46].

Since service detection is performed by examining implementation

differences, it is possible to deny surveillance by modifying these differences.

Early uses of this idea, implemented in Morph [47], were able to transparently

camouflage a system to appear as Windows 2000, OpenBSD, or Linux 2.4. The

concept has also been used in FreeBSD, which scrubs its fingerprint so that it is

not detectable by scanners [48]. Linux 2.4 provides a program called IP

Personality that allows it to take on alternative operating system characteristics

[49]. All of these packages focus on manipulating TCP/IP protocol details to

prevent operating system detection. Unlike these solutions, this thesis focuses on

denying surveillance of both the TCP/IP protocol, to prevent OS-level

fingerprinting, and the application layer, to prevent discovery of the specific

programs being run on the server.

 18

Chapter 3: Gold-Standard Refresh

To explore the ideas non-deterministic refresh, code diversity, and

camouflage it is useful to consider how these techniques might form the basis for

a from-scratch operating system design. Current operating system designs have

sought to utilize a static base of trust and extend trust into software through

deliberate layering [50]. A wide variety of vulnerabilities have appeared that

undermine kernel security allowing attackers to implant code, hide, and persist at

the highest levels of privilege [51]. Furthermore, studies of open source code have

indicated that the number of vulnerabilities is directly correlated with the size of

the code base [52], indicating that there is substantial value in the intellectual

process of reducing the attack surface.

The approach described here assumes that adversaries will conduct

surveillance, will be successful in gaining access, and will persist undetected. To

mitigate the risks associated with remote control, the current kernel, user

processes, and device drivers are periodically discarded. This can be achieved

when they are momentarily not in use, through a collaborative program of

interruption, or just prior to the onset of a tactical operation. They are replaced by

new instances, bootstrapped in the background from read-only gold standards.

The cumulative effect of this change in design style is to increase attacker

workload by continually invalidating surveillance data and denying persistence

over time-scales consistent with tactical missions. Unlike other approaches to

computer security [53], no attempt is made to detect intrusions: instead, this

research focuses on continually validating, preserving, and re-establishing the

 19

ability of a mission to proceed. The intent is to cause the attacker to take more

time, make more errors, and force attack actions outside the OODA loop of the

defender; effectively removing the threat without directly confronting it.

These concepts have been incorporated into a new, from-scratch operating

system design ï Bear ï which operates on 64-bit, x86 multi-core blade servers,

and Dell workstations. The full system is depicted in Figure 2 and is composed of

a minimalist micro-kernel with an associated hypervisor that shares code

extensively to explicitly reduce the attack surface. The micro-kernel also operates

independently on ARM M3, M4, A8, and A9 processors.

Figure 2: The Bear operating system layers.

The core functions of scheduling user processes and protecting them from

each other are handled by the micro-kernel [1]. All processes and layers are

hardened by strictly enforcing MULTICS-style read, write, and execute

protections [18] using 64-bit x86 address translation hardware. Similarly, the

hypervisor enforces these protections on kernels. This calculated reduction in

 20

versatility is unlikely to impact military applications but explicitly removes

vulnerabilities associated with code execution from the heap or stack. All

potentially contaminated user processes, device drivers and services are executed

with userïlevel privileges and are strictly isolated from the micro-kernel via a

message-passing interface. The system task, executing with kernel privileges,

mediates between processes and the kernel to implement the interface. Unlike a

conventional rendezvous mechanism [54], this asynchronous, buffered design

provides a single uniform treatment of system calls, inter-process, and inter-

processor communication. The interface also supports distributed computing

through an MPI-like [55] programming model that maps processes to processors

using a user level demon, rMP.

To prevent persistence in the micro-kernel, it is non-deterministically

refreshed from a gold-standard image in the trusted file store by the hypervisor

[56]. This store is currently realized through a read-only RAM-disk accessible

only from the kernel and hypervisor; however, it could alternatively be realized

via read-only memory (ROM) or via an out-of-band, write-enabled channel to

flash on new hardware. This minimalist hypervisor design supports only the

operations required to bootstrap a new micro-kernel and change its network

properties (e.g. IP & MAC address) so as to invalidate an adversaryôs surveillance

data. It is significantly different from traditional hypervisors that aim to support a

general virtual machine execution environment [57-59], admits to considerable

code sharing with the microkernel, and represents a substantial reduction in the

system attack surface [1]. The PXE-boot based bootstrapping process

 21

incorporated into the hypervisor applies diversifying transformations to each new

kernel. This ensures that every kernel is unique in terms of its addresses, throttling

vulnerability amplification and rendering prior surveillance obsolete. The current

running and bootstrapping instances of the micro-kernel are isolated in hardware

through extended page tables, implemented with Intel Vt-x extensions. Similarly,

the network driver is isolated through a mapping scheme based on Intel VT-d

extensions.

To prevent persistence in compromised device drivers and services, the

micro-kernel randomly and non-deterministically regenerates them from gold-

standard images resident in a trusted read-only file store. This process is achieved

using the same diversity transformations applied by the hypervisor. Unlike the

MINIX re-incarnation process [54], regeneration is carried out without regard to

the perceived fault or infection status. User processes can also be refreshed

through pre-arranged or designated schedules; for example, every few hours, at

night, or just prior to a tactical mission.

The diversification techniques described in this research are applied every

time any component of the Bear system is refreshed: when the hypervisor reloads

a kernel or when the kernel reloads a device driver or user process. As a result,

even if an adversary were to obtain a copy of the entire binary code at any point in

time, and invest the effort to reverse engineer it to find vulnerabilities, by the time

those vulnerabilities could be exploited the entire address space of the system

would have changed and any existing persistent presence eliminated.

 22

3.1 Hypervisor Design

The Bear includes a novel hypervisor has incorporates six core design goals:

1. Diskless, Read-only Bootstrapping.

2. Non-deterministic Kernel Refresh, Denying Persistence.

3. MULTICS-style Protections Applied to Kernels.

4. Processor State Protection.

5. Attack Surface Minimization.

6. Kernel Diversity, Denying Surveillance and Throttling Vulnerability

Amplification.

This chapter describes the realization of Goals 1 through 5; Goal 6, related

to diversity, is covered in Chapters 4 and 5. For now, it is important to simply

recognize that the hypervisor diversifies kernels and processes whenever they are

reloaded.

The hypervisor was developed to support only the core goals. Unlike

popular systems such as KVM, Xen, and VMWare, it is not designed to provide a

generic virtualization environment capable of supporting arbitrary systems.

Although the Bear micro-kernel has also been implemented on ARM architectures,

the hypervisor only operates on the x86-64 platform using its VT-x hardware

support for virtualization. This platform uses several structures and ideas for

processor control and memory protection, such as the CR0 and CR4 registers, real

mode, protected mode, long mode, segmentation, GDT and LDT. Appendix A

includes more information on these structures and their use, for those who lack

familiarity with the basic platforms.

 23

The remainder of this chapter is devoted to the inner workings of the

hypervisor. These details operate collectively at the lowest level of the system to

realize the six core goals. The system bootstrap process is described first,

followed by the enabling of virtualization, and the hypervisorôs main loop. With

the groundwork of the hypervisor detailed this chapter then discusses how

virtualization can be used to protect kernels and other design considerations used

in creating the system.

3.2 Goal 1: Diskless, Read-only Bootstrapping

 The hypervisor bootstrap process takes the system from a powered-off

state to a running hypervisor. It must load all necessary system image files, set up

memory protections, and enter long mode -- a protected processor state required

to enforce memory protection. Most modern operating systems use long mode;

however, few enter this mode directly, instead operating initially in an

unprotected and vulnerable real mode during bootstrapping to support legacy

capabilities. Circumventing this legacy support with a from-scratch design not

only simplifies bootstrapping but also reduces the vulnerable time in real mode.

Figure 3 provides a simplified overview of the entire bootstrapping process. It

contains three concrete stages that incrementally built and protect the system:

MBR, Stage-1, and Stage-2 bootloaders. Each stage is circled, and lists the

specific tasks performed by the stage.

 24

Figure 3: Bootstrapping the hypervisor.

The Bear bootstrapping process has emerged through two iterations to

support the goal of diskless read-only bootstrapping. The first iteration used a

simple Fat file system accessing a physical hard disk on the machine, addressed

using the IDE standard. The second iteration uses the PXE boot standard to

transfer a read-only image to a RAM-disk on the machine; the Fat file system is

then used to access the RAM-disk containing the system executables. The file

system does not provide a write operation and can only read data from read-only

protected memory pages. To minimalize code changes, the images transferred in

the bootstrap process are identical to those used in the original design. They are

 25

deposited at the PXE-boot server after compilation, providing a natural hook for

encryption of the binaries.

3.2.1 The MBR Bootloader

The "IBM compatible" label associated with personal computers dating

back to the 1980s includes a boot loader standard still used by most modern

operating systems: Upon system start, the first 512 bytes of a bootable hard disk,

called the Master Boot Record (MBR), is loaded at physical address 0x7c00. The

MBR contains the code for the initial section of a bootloader. The MBR also

contains a partition table, which defines the layout of the rest of the physical disk,

and a two-byte signature. The structure of the MBR is shown in Figure 4.

Figure 4: Illustration of the IBM -compatible MBR and partition table.

 26

The elements marked À in the partition table correspond to a Cylinder-

Head-Sector method of addressing data on disk that are no longer used. Modern

systems, including Bear, instead use Logical Block Addressing (LBA) in which

512-byte sectors are laid out linearly on disk. For example, the 655th sector

would correspond to the data on disk ranging from bytes 655(512) to 656(512)-1.

Once the MBR is read into memory, the processor then begins execution

at address 0x7c00, the location of the MBR bootloader code. At this point, there is

no form of memory protection and the processor is in real mode.

The MBR bootloader is, of necessity, simple due to space constraints;

since it must share the MBR with the partition table, the maximum size of its code

is only 446 bytes. It first examines the partition table to discover the location of

the first partition, and then reads the first 512 bytes ï containing the stage-1

bootloader ï from that partition into memory. Unfortunately, before the stage-1

bootloader can be executed, some additional data must also be read from the disk:

a secondary structure called a disklabel (this is the standard disklabel used by

DragonFly BSD [60]) stored immediately following the stage-1 bootloader. The

disklabel is used to discover where the system images begin, as well as the

location and size of the final stage of the bootloader code ï the stage-2 bootloader.

Once all of this data is read from disk, the stage-1 bootloader begins execution.

3.2.2 The Stage-1 Bootloader

The stage-1 bootloader examines the system RAM to build a map of the

available memory, sets up segmentation and paging, enters long mode to enforce

memory protection, and then passes control to the stage-2 bootloader. To build the

 27

memory map, a BIOS call is invoked that returns a listing of available and

reserved memory regions. Diagnostic information can be displayed at this point

via a console that is enabled. Segmentation structures for the GDT and segment

registers are created. A read-only code segment is created for both privilege levels

0 and 3 that stretches from 0 to the end of memory. Two read-write data segments

are created in the same manner, and the segment selectors are initialized with

these values. Finally, following the enabling of segmentation, protected and long

mode are enabled: the low bit of CR0 is set, PAE mode for paging is enabled, and

bits 8 and 11 of the EFER MSR (IA-32e mode, allow NX bit) are enabled.

Although the boot loader has set the necessary bits for entering long mode,

it must also enable paging before long mode can be activated. To this end the first

two megabytes of physical memory are identity-mapped to virtual memory, so

that the physical and virtual addresses are equivalent. Finally, long mode is

enabled by setting the paging bit of CR0, reloading the GDT with a new

segmentation table (this table uses the same data, but with expanded sizes for the

larger address space), and enabling the 64-bit code segment. The system is now in

long mode, and the most basic requirements of modern operating systems have

been satisfied; However, the bootloader has more work to do before the

hypervisor can be started: Initially, the stage 1 bootloader enables the floating-

point unit and vectorization units. Control is then passed to the stage-2 bootloader.

3.2.3 The Stage-2 Bootloader

The stage-2 bootloader is a much larger process that does not suffer from

the 512-byte size limitation due to presence of paging. Unlike the MBR and stage-

 28

1 bootloader, it is written entirely in C and performs tasks that require more

complexity in code, which would result in a code fragments larger than 512 bytes.

For example, since the system has entered long mode, convenient calls to the

BIOS for basic tasks such as reading data from the disk and printing diagnostic

messages can no longer be used. Thus, basic drivers for disk access and printing

to the VGA memory must be included within this stage.

The stage-2 bootloader initially augments the already-paged memory:

increasing the identity-mapped paged memory from the first two megabytes of

system memory up to the first 12 megabytes, so that the hypervisor is guaranteed

to fit when loaded. It then utilizes a basic IDE disk driver to read the hypervisor's

ELF binary from the file system defined by the disklabel. Finally, the hypervisor's

ELF structure is analyzed and checked by a minimal ELF loader. This loader

performs no protection, relocation, or other complex tasks associated with normal

user program loaders. Instead, it merely verifies the file for validity and loads the

listed program headers. Once loaded, control passes to the entry point listed in the

hypervisor binary. At this point, the boot process has completed.

Originally, the stage-2 bootloader also set up and handled a table of

system interrupts. This functionality was eventually deemed unnecessary, and

removed.

3.2.4 PXE Boot

The bootstrapping system described by Figure 3 is built upon a network

boot protocol, called PXE boot, which runs before the MBR boot loader. The

protocol downloads the image of a program named MEMDISK from a networked

 29

server [61]. This program transfers over the network a hard disk image containing

the Bear operating system, which mirrors the structure and filesystem of the

original physical hard disk. The MEMDISK program then copies the first 512

bytes of this disk image to physical address 0x7c00, just as the BIOS would do

with the original physical hard disk. Then, the system begins executing the code

or data as it originally did with the physical hard disk. The post-MEMDISK

environment is indistinguishable to the environment seen by the bootloader

without using network boot. However, any BIOS calls to disk reads are instead

redirected by MEMDISK to the hard disk image in memory.

3.3 Goal 2: Kernel Refresh, Denying Persistence

This section describes the hardware control and structures associated with

virtualization on the Intel x86-64 platform and how these are used by the Bear

hypervisor to operate virtual machines and perform kernel refresh. This feature set

is commonly called Vt-x and the features are named in the Intel manual as VMX.

Unlike many x86 features, Vt-x is not shared between Intel and AMD processors

ï AMD has its own hardware feature set for virtualization, called SVM. Bear

initially targets Intel processors, and thus uses Intel VMX.

3.3.1 Enabling Virtualization

The virtualization feature set is controlled by the VMXE bit of the CR4

control register. To activate virtualization, this bit must be set; however, there are

several subtleties that must also be observed. The abstract code in Program 1

describes the complete process.

 30

// Check if VMX is available on this processor.

CPUID

Bit 5 in ECX set?

No - > Fail

// The BIOS can disable VMX. Test this, and enable VMX

// if it is not locked out.

Read MSR 0x3a

Bit 0 set, bit 2 cleared?

 Yes - > Fail

Bit 0 set, bit 2 set?

 Proceed

Bit 0 cleared, bit 2 cleared?

 Set bits 0 and 2

// The VMXE bit must be enabled.

Set VMXE in CR4

// CR0 and CR4 must have sp ecific bits set or cleared.

// Test that the values are what are needed for VMX.

tmp < - Read MSR 0x486

tmp = (CR0 AND tmp) XOR tmp

Is tmp 0?

 No - > Fail

tmp < - Read MSR 0x487

tmp = (CR4 AND tmp) XOR tmp

Is tmp 0?

 No - > Fail

// The processor uses a 4 096- byte, page - aligned region

// of memory for storing information.

Allocate 4096 - byte region of memory: VMX - Region

Zero VMX - Region

VMX- Region[0:29] < - MSR 0x480

VMXON VMX- Region

Program 1: Enabling virtualization .

On conclusion of this process, the processor is capable of utilizing

virtualization. This includes launching, swapping, and resuming virtual machines.

In this process, the hypervisor is called the host and the virtual machines it

controls are called the guests. Launching or resuming a guest is called a VM entry,

and control being passed back to the hypervisor is called a VM exit.

3.3.2 The Hypervisor Main Loop

 31

 Once virtualization is enabled through the process in section 3.3.1, the

hypervisor is ready to launch and control the Bear microkernel. Program 2

describes the basic operation of the hypervisor. It consists of a simple loop that

repeatedly creates a virtual machine, bootstraps the microkernel on a virtual

machine from the read-only file store, waits for a preemption time, and non-

deterministically discards the kernel.

// Initialize VMCS Region

START:

Allocate 4096 - byte region of memory: VMCS

Zero VMCS

VMCLEAR VMCS

VMPTRLD VMCS

// Controlling parameters f or the kernel are then set.

// These include a preemption tim er, control register

// state, instruction pointer, and other values.

VMWRITE some- parameter

VMWRITE other - parameter

...

Load kernel from gold standard read - only source

Apply diversification

Save hypervisor register state

// Begin execution of virtual machine

VMLAUNCH VMCS

... virtual machine execution proceeds ...

... Preemption timer interrupt!

Save virtual machine register state

Restore hypervisor register state

Time for refresh?

 - > Throw ke rnel away, goto START

Save hypervisor register state

Restore virtual machine register state

VMRESUME VMCS

Program 2: The hypervisor main loop.

A hypervisor controls its guests through a block of memory called the

Virtual Machine Control Structure (VMCS). This is a four-kilobyte, page-aligned

block of memory, one per logical virtual machine that the hypervisor executes.

The VMCS contains all of the parameters associated with the guest that are

 32

manipulated in Program 2, including how the virtual machine might automatically

be interrupted so as to pass control passed back to the hypervisor. There are a

large number of parameters that can be stored in this structure, not all of which

are used by the Bear system. The parameters used by the Bear system are listed

and described in Appendix B; a complete listing can be found in [27].

In addition to the steps described in Program 2, there are several other

necessary steps associated with bootstrapping a virtual machine. These include

determining default and supported values for various VMCS fields; however,

these are generally part of the initialization steps and not actively performed

during the loading and managing of virtual machines and have no direct bearing

on the project goals.

 Recall that Program 2 refreshes the kernel from the RAM-disk

corresponding to the gold-standard, read-only source to deny persistence. The

read-only status of the disk is enforced by the hypervisor but could also be

realized through a hardware back-channel to allow updates. This refresh-from-

standard process ensures that if a rootkit were to persist in the kernelôs memory it

will be flushed out of the system. By utilizing the read-only source, rootkits lose

that avenue for persistence.

 Although not yet described, it is valuable to understand the hook provided

by Program 2 for applying the diversity ideas (Goal 6) that will emerge in later

chapters: During the bootstrapping of a new kernel, the hypervisor uses an ELF

loader that incorporates the ideas presented in Chapters 4 and 5.

3.3.3 Kernel Environment

 33

The hypervisor initializes each kernel in an environment that acts as if a

bootloader had initialized it. This environment mimics, in the kernelôs memory

space, all the normal attributes expected by a bootloader. System memory is

placed in the same map; segmentation registers and paging are set up in the same

manner (though diversity is added); long mode is enabled. Control registers are

made to mimic those on the system. The parameter values used by the hypervisor

are read and are set as those of the guest, the only change being that virtualization

is disabled for the guest. Control register modification outside of these values is

rendered impossible (see section 3.4.2).

 The address space given to each guest mimics that given to the hypervisor

by the bootloader, a 256-megabyte chunk of memory is allocated for each guest.

This memory is redirected it so that the guest operates on physical addresses from

zero to 256 MB (see section 3.4.1 for more details on this process). A BIOS

memory map is placed at the normal bootloader location, marking the BIOS areas

as unavailable and the rest of the space as available for system use. Unlike the

hypervisor bootloader however, the hypervisor employs a sophisticated and full-

featured ELF loader. This enables the hypervisor to apply diversity to the kernelôs

ELF binary, both the kernel code and data scattered throughout its address space.

For more information on this process and the details of the scattering, see chapters

4 and 5.

 Some spaces external to the guests 256-megabyte chunk are redirected

into the kernel memory space. The VGA memory used by the console is placed in

its normal physical location. Any memory for the network card and, theoretically

 34

in the future, other hardware peripherals, is likewise redirected and available for

use directly by the kernel. The hypervisor does not attempt to multiplex access to

hardware contested by its guests: instead, it operates under the assumption that

only one kernel will be active and have access to hardware at any given time.

Recall that the hypervisor exists only to non-deterministically throw away kernels

and refresh them from a gold standard, removing persistence in the kernel. With

no contention for hardware, the hypervisor is not required to mediate access,

keeping its code base minimal2.

3.4 Goal 3: MULTICS -style Protections Applied to Kernels

 Recall that design Goal 3 involves applying classic MULTICS-style

read/write/execute protections to kernel memory. These protections prevent

accidental and malicious memory corruption by writing into executable code.

Running guests in paged protected mode while preserving the illusion that

they have complete control over the system, has classically been a thorny issue. A

guest kernel running unmodified would clearly need to exert some form of control

over the system page tables in order to allocate its own memory and separate user

processes from each other. Giving the guest total control, however, would defeat

the point of the hypervisor providing protections and isolating guests: the guest

could examine and modify any memory on the system, including that used by the

2 Eventually, some form of validity checking with how a kernel interacts with the hardware may

be implemented. If this is done, the hypervisor will need to mediate access ï but in this case, for

protection, not multiplexing.

 35

hypervisor to control the guest. The hypervisor would then be unable to protect

kernels in the same fashion as kernels protect user processes.

Past solutions have centered on shadow page tables, where the guest

kernel is unable to actually access the page tables. The hypervisor keeps a

mapping of virtual memory as seen by the guest and its correct translation to

physical memory. Any attempt to modify CR3 or the page tables would cause a

VM exit, and the hypervisor would then handle the modification instead after

checking that it was acceptable. Any page fault would similarly be forwarded to

the hypervisor, which would need to service the interrupt. This process is slow

and puts the burden for checking whether a modification is benign (a process

switch) or malicious (making hypervisor memory accessible to the kernel) onto

the hypervisor. It also significantly increases the complexity of the hypervisor,

which then needs to incorporate knowledge of how to deal with the memory

management systems of each guest kernel that might need to run.

To deal with these issues, Intel released the Extended Page Table system.

This is a form of nesting where the guest has complete control over the classic

page table structure. The hypervisor provides an extra layer of address translation,

after the normal page tables, which is completely transparent to the guest

operating system. This allows a hypervisor to manage physical memory without

the overhead of shadow page tables while also giving the guest the illusion of

total physical memory access. A diagram of the resulting translation system can

be seen in Figure 5.

 36

Figure 5: Illustration of Extended Page Tables.

Addresses are translated from guest virtual to guest physical using the

normal page table structure of the kernel. Afterward, a second page table structure

takes over which translates the guest physical address to its true physical address.

This structure is rooted by the Extended Page Table Pointer (EPTP). The EPTP is

defined in the VMCS, and is the EPT version of CR3. Much like the rest of the

system, an EPT page can be configured to be either four kilobytes or two

megabytes large, with the length of translation and page table structures changing

accordingly. The Bear system uses a four kilobyte page size for both the normal

page tables and the EPT.

Similar to how the kernel allocates memory for user processes, the

hypervisor can decide which system memory it exposes to running guests. This

choice generally excludes the memory of itself and other virtual machines on the

system, thus offering isolation and protection. A kernel cannot view other

memory on the system without modifying the hypervisorôs EPT structure, which

it cannot do without somehow breaking into the hypervisor.

 37

While EPT has vastly simplified hypervisor logic, it comes with another

benefit ï built-in MULTICS protections. EPT, just like the normal page tables,

allows the hypervisor to control which among read/write/execute permissions are

allowed for a given memory page. With the desired read/write/execute

permissions for memory segments set in the ELF binary for the kernel, these

MULTICS-style protections can be applied to the kernel, just as the kernel applies

them to its own running processes.

The Bear hypervisor configures EPT to provide these controls on kernel

code and data, learning from the kernelôs ELF binary which pages should be

protected to what degree. If there were no hypervisor, an exploit with kernel-level

access could modify the page tables to perform these operations at will. With the

addition of the hypervisor, however, any attempt to patch read-only kernel

memory or execute code located in a data region will result in a VM exit, at which

point the hypervisor can take appropriate action. Hypervisor memory is

inaccessible from the guest; using EPT, it does not even need to be mapped into

the guestôs address space. The abstract code for the hypervisor is thus augmented

as shown in Program 3.

 38

The mechanism whereby a hypervisor might spin down a kernel with

outstanding connections until their completion, while spinning up a new gold-

standard kernel for new connections, is explored in [56].

3.5 Goal 4: Processor State Protection

The intent of protecting the processor state is to prevent successful

exploits from performing modifications that would assist with stealth and

persistence. By virtue of adding another layer of hardware controls to the system,

hypervisors can provide protections to kernels that were previously impossible.

The ability to provide MULTICS-style protections has already been discussed,

but there are also additional mechanisms available to protect the processors

critical data structures. As these structures are often used by rootkits to aid in

stealth, protections on them can mitigate fundamental attacks against memory

protection. For example, consider the ñCR0 trickò [10] used to bypass system

memory protections: The x86 architecture contains a flag in CR0 which, if cleared,

allows kernel-level code to write to any region of memory, even write-protected

memory. Since kernel-level code can modify CR0, any malicious code that wishes

// Begin execution of virtual machine

VMLAUNCH VMCS

... virtual machine execution proceeds ...

... EPT violation interrupt!

Save virtual machine register state

Restore hypervisor register state

// Take appropriate action. One possibility:

Log violation

Put kernel in background; accepts no new co nnections.

// Start a new kernel to handle new clients.

Goto START

// Restore the bad kernel on an unused processor.

Restore virtual machine register state

VMRESUME VMCS

Program 3: Handling memory violations.

 39

to write to read-only memory need only clear the WP bit, perform the desired

writes, and reset the bit once more, entirely bypassing any form of write-

protection that has been set in the segment registers or page tables.

 With hypervisor protections on the control registers, this attack can be

eliminated. Using specific fields in the VMCS (see Appendix B for more details

on these fields: the guest/host mask and read shadow), the hypervisor can set

this bit to a static value that a kernel cannot change. Then, a malicious attempt to

clear the bit will cause a VMexit, preventing undesired writes to read-only

memory3.

 Unfortunately, these protections are not general-purpose in nature; many

operating systems, including the Bear bootloader, utilize write protection bypass

feature in their own code. Thus, to properly utilize these protections, the kernel

must be designed with the inability to bypass the restrictions in mind. Even if the

hypervisor enforces the condition that code to disable the protections was only to

be run within a specific function, malicious code could always return to that

function in a return-to-libc style attack, and then proceed. To ensure complete

write protection within kernels, the ability to bypass it at all must be removed. For

the Bear system, any possibility of disabling these write protections has been

3 Itôs worth remembering that there are other ways to bypass write protections in the Intel system,

not just the CR0 trick. For example, the page table entries could be modified, by setting the

writable bits in the individual entry or creating a whole new page structure. Both of these can also

be controlled by the hypervisor though: either through use of EPT in the former or both EPT and

the CR3 controls in the latter.

 40

removed ï with the ability completely out of the kernelôs hand, any such return-

to-libc style attack is taken off the table.

3.6 Attack Surface Minimization

 The Bear system has been designed to minimize the attack surface by

extensively sharing code between the hypervisor and microkernel. Recall that a

survey of open source code discovered approximately 0.16 errors per thousand

lines of code in open source software [52], making the reduction of the attack size

a laudable goal for reducing vulnerabilities. Table 1 shows the current number of

unique lines of code in each component of the Bear system, as well as shared lines

of code.

Table 1: Code size.

Component Lines of Code

Hypervisor 1,788

Kernel 2,335

Shared 5,062

The shared code includes the following:

¶ Basic data structures (queue, hash table, etc.).

¶ Interrupts handling

¶ C-callable wrappers around basic assembler instructions.

¶ Virtual memory subsystem, including allocation and freeing.

¶ Disk access (including RAM disk) and filesystem.

¶ System timer.

¶ The ELF loader.

¶ Process scheduler (schedules both user processes and virtual machines).

 41

3.7 Supporting Legacy Operating Systems

A future research project involves the running of different operating

systems on the Bear hypervisor. This work is still in its vestigial stages and is

experimental, as the Bear hypervisor was originally designed solely to run the

Bear kernel. The first operating system that has been run on Bear is NetBSD

version 6.0.1.

 Unlike running the Bear kernel, for NetBSD the hypervisor does not

perform any of the boot loader operations that the kernel expects to have been

performed. Segmentation and long mode are not enabled; instead, the guest is

started in real mode as if the system had just been booted ï though a memory map

is provided as if performed by BIOS call. The system BIOS memory is copied

into the address space of the guest, so the guest may directly perform any BIOS

calls that it might need without hypervisor interference; otherwise, the hypervisor

would need to emulate a large number of complex BIOS routines.

Multiprocessing is not supported: while the ACPI region of the BIOS memory

reports that multiple processing cores are available, NetBSD has been compiled

and passed flags to disable this behavior and instead run on a single core, without

using ACPI at all. The current status of the project is that NetBSD successfully

boots, but does not start a shell due to lack of a root file system -- Bear no longer

supports a physical disk. To mitigate this involves porting NFS and pointing it to

an NFS share across the network to act as its root filesystem.

 This work has only been possible due to the open nature of NetBSD; a

similar attempt to virtualize Microsoft Windows would likely prove to be much

 42

more complex due to the inability to examine the Windows source code when

problems arise with virtualization.

3.8 Summary

In summary, this chapter has described a minimalist hypervisor that

continually refreshes kernels to deny persistence. The hypervisor shares code

extensively with the microkernel, applies MULTICs-style read/write/execute

protections to kernels and additional protections on the processor state. Write

protection is enabled through the hardware NX-bit in X86-64 page table entries.

The protections are leveraged to support a diskless, real-only bootstrapping

process. The hypervisor main loop provides the necessary hooks for adding

diversity every time a new kernel is refreshed.

 43

Chapter 4: Diversity through Compile-Time Techniques

Diversification is the primary mechanism for preventing unexpected code

execution and similar exploits in the Bear system. The diversifying

transformations nondeterministically scramble the locations of code and data on

the system, making exploits that rely on this knowledge fail. The process of

introducing nondeterministic modifications to binaries also serves to create

differences between running versions of code on networked systems and thus

throttle the vulnerability amplification aspect of networks such as the Internet.

With each system running something different, attackers must craft new exploits

to target specific systems, rather than a single exploit for every system.

The Bear diversifying transformations seek to achieve four key properties

in the resulting binary codes:

1. Shifting all code out of position to disrupt the entry points for all code

segments, including unanticipated ones.

2. Placing all code in an unpredictable location to prevent an attack from

resuming to normal execution by jumping or returning to a known location.

3. Changing jump offsets within all code paths, such as if/else, switch, and

for-loop blocks, to remove similarities between all variants of a binary.

4. Shifting of all data out of position to disrupt direct manipulation.

Properties #1 and #2 prevent code execution that hijack pre-existing code

on a system, such as Return-Oriented Programming [14]. Property #2 denies

persistence on the system, disallowing an attacker from achieving a hidden point-

of-presence within a running system. Property #3 enhances diversity beyond

 44

ASLR [32], extending the entropy to logical blocks within the program rather

than simply individual functions or ELF segments. Property #4 removes the

ability to designate control or plant code in pre-existing data structures.

 Compile-time diversification is performed through two operations: the

padding transformation and the ordering transformation.

4.1 Implementation

 The compile-time diversity techniques are introduced as part of the

compiler toolchain. The padding transformation is implemented as a Clang

compiler plugin [62], and the ordering transformation is implemented as a patch

to GNU Gold, a linker that is part of the standard GNU Binutils package [26] on

Linux systems. To add diversity to a binary, the compilation process must be

slightly modified in two stages:

1. Before normal compilation with the C compiler (such as gcc), the source

files must be diversified via the clang plugin. This represents as a pre-

compilation pass, and applies the padding transformation.

2. The linker requires an additional flag passed as part of the linking process:

ñ--randomize-textò. This tells the linker to apply the ordering

transformation to the final output.

The resulting binary is identical in function to a binary compiled without

diversity, but has been nondeterministically modified to satisfy goals 1, 2, and 3.

4.1.1 The Padding Transformation

 45

Recall that the diversity transformations are motivated by three core goals:

disruption of entry points, disruption of return points for resuming normal

execution, and modification of all jump offsets within code paths. To achieve each

of these ideas, s bits of entropy are injected into every block in a program. This is

achieved by inserting a random number of bytes, between 0 and 2s ï 1, at the

beginning of each block, using a uniform random distribution. The inserted bytes

themselves are random numbers. Jump instructions are inserted before the random

byte stream to ensure they are not executed by normal operation; this minimizes

the performance effect of the transformation. The insertion is implemented

through source-to-source transformation on the original C source code using a

Clang compiler plug-in. The plug-in operates as shown in Program 4.

For each source file:

 For each function:

 n < - random(0, 2 s ï 1)

 insert_asm_string(ñjmp 1fò)

 for i from 0 to n:

 b < - ran dom(0, 255)

 insert_asm_string(ñ.byte bò)

 insert_asm_string(ñ1:ò)

Program 4: The padding transformation.

Figure 6 shows the padding transformation in action. The left-most

function is the original source code; the two right-most functions demonstrate two

possible results from the source-to-source transformation: the first using a two-

byte, followed by a four-byte random sequence; the second using a one-byte

followed by a two-byte sequence. This represents a ñrandomò amount of vacuous

code inserted into every block.

 46

Figure 6: Function with two vacuous-padded variants.

In consequence of this transformation, if an attacker attempts to use pre-

existing code present in the binary, based on static analysis, the execution will

incorrectly jump to a random prior location, typically causing a crash. On some

rare occasions where a crash is not triggered, an unexpected non-deterministic

action will be performed.

4.1.2 The Ordering Transformation

Generally, linking is a deterministic process. Even if a binary is

recompiled, the location of functions in memory remains the same. This can be

modified to some degree by changing the order in which the object files are

supplied to the linker, but this is also typically an automatic and deterministic

process. There is little reason, performance-wise, for this determinism, and every

reason to modify it for the sake of diversity. The ordering transformation outputs

functions within the text segment in a random order. It has been implemented

through a modification to the Gold linker (part of GNU Binutils). The

void fn() {

if(var) {

é

}

é.

}

void fn() {

jmp 1f

0x63 0x4F

1:

if(var) {

jmp1f:

0x27 0x15

0xCA 0xD5

1:

é

}

é.

}

void fn() {

jmp 1f

0xA9

1:

if(var) {

jmp1f:

0x02 0x24

1:

é

}

é.

}

 47

transformation only operates on input sections of the object files marked as text

(ie. corresponding to code).

This transformation can be applied at the fine-grain of individual functions,

as shown in Figure 7, provided the object files are compiled with one function per

ELF section (i.e. using the -ffunction-sections flag on gcc-compatible compilers).

Alternatively, it can be applied at coarse-grain on complete object files, where the

location of the entire object file is randomized. A simple -Wl,--randomize-text

flag on the compiler command line for a gcc-compatible compiler will inform the

linker to apply the ordering transformation. This ordering transformation ensures

that even if an attacker learns the base address of the text segment, they will not

be able to exploit memory vulnerabilities discovered through static analysis of the

binary. The implementation is extremely simple: before the linker writes the text

sections to the output binary as normal, the array containing these sections is

randomly shuffled. The result of applying this transformation is demonstrated in

Figure 7.

Figure 7: Function layout after compiling and linking.

4.2 Quantifying Diversity

int main() { ... }

void fn1() { ... }

void fn2() { ... }

void fn3() { ... }

plt

_start

main

fn1

fn2

fn3

plt

_start

fn1

fn3

main

fn2

 48

Each transformation injects a certain amount of nondeterminism. To

measure this amount, this research uses Shannon entropy. Shannon entropy is a

familiar concept: specifically, it measures the information content of a random

variable. Our diversifying transformations effectively inject measurable entropy

into running processes and their binary images. The amount of injected entropy

informs us to both the effective number of unique variants created by our

transformations, and the difficulty of using brute force to discover a specific

address of a piece of code or data. The random variable, in this case, is the

memory address of an arbitrary code fragment.

4.2.1 Entropy of the Padding Transformation

Since the linker by default lays functions directly back-to-back in the

program binary, the amount of entropy gained by the padding transformation is

not solely derived from the number of random bits s injected in each function.

Instead, the locational difference that any given code fragment could take is also

based on the number of blocks b in which bytes are placed earlier in the file. The

probability of a locational difference of a given magnitude is equivalent to the

probability of the rolling that magnitude on b s-sided dice. For large values of b,

the probability p can be approximated using a normal distribution with variance:

p = b(s2 - 1) / 12

Thus based on the definition of entropy on a normal distribution, the total

number of bits of entropy can be approximated by:

lg(2ĿˊĿe·p) / 2

This value only represents the entropy available to the very last instruction

in the binary; as one proceeds toward the top of the binary, the number of blocks

 49

decreases, as does the entropy (as the distribution becomes less normal-

resembling with fewer dice rolled). However, when including the ordering

transformation, the terminating instruction in every function can potentially be the

last in the binary file, and thus the calculated value becomes substantially more

meaningful: now the entropy of each block is quantified, rather than the only the

final block.

To approximate padding entropy for discrete binaries, replace the term b

with the average number of blocks per function. Doing this, Table 2 presents this

level of entropy as a function of s and the corresponding number of unique

variants generated for three code exemplars: the Bear hypervisor, the Bear kernel,

and the open source web server lighttpd [63]. The hypervisor contains 3460

blocks (an average of 9.25 blocks per function), and the kernel 3833 (an average

of 12.44 blocks per function) at the time of measurement. Lighttpd contains 1629

blocks (an average of 4.59 blocks per function). Using these values, Table 2

presents the level of entropy as a function of s and the corresponding number of

unique variants generated. The first number in the table entries represents the

entropy for the whole program, and the second number in [brackets] represents

the entropy of an individual function in the program. The units of entropy are bits,

and the units of variants are merely the total number possible.

 50

Clearly, as seen in data, standing alone the padding transformation is not a

particularly impressive source of diversity: even with up to 256 bytes of padding

inserted only 19,000 variants can be obtained ï small in comparison to the size of

modern cloud computing environments. However, this represents a base level of

diversity that can be further enhanced in combination with other transformations.

As will be shown, this combination radically increases entropy.

4.2.2 Entropy of the Ordering Transformation

The level of entropy generated by the ordering transformation is

deceptively complex to calculate. Without loss of generality, consider any

arbitrary function F. There is a uniform probability of placing this function in any

location among the other functions. However, functions can have different sizes.

Imagine the case where every function has a size equal to a unique power of two,

such that one function has size 1, one has size 2, one has size 4, etc. In this

specific case, every possible reordering of functions produces a unique

Table 2: Padding entropy

Exemplar

Maximum Bytes Inserted

8 16 64 256

Hypervisor

Entropy

9.12

[3.36]

10.13

[4.06]

12.13

[5.45]

14.13

[6.83]

Hypervisor

Variants
557 [10] 1,121 [17] 4,491 [43]

17,965

[114]

Kernel Entropy
9.20
[3.51]

10.20
[4.20]

12.21
[5.60]

14.21
[6.98]

Kernel Variants 586 [11] 1,180 [18] 4,727 [48]
18,908

[126]

Lighttpd Entropy
8.58

[3.01]
9.59 [3.71]

11.59

[5.09]

13.59

[6.48]

Lighttpd Variants 382 [8] 769 [13] 3,081 [34] 12,327 [89]

 51

transformation of function F. Thus, if there are n functions, there are 2n unique

transformations and n bits of entropy. This provides an upper bound on the

amount of entropy possible, but is not particularly instructive as it is extremely

unlikely that all functions would be uniquely and appropriately sized.

An alternative is to establish a practical lower bound. Assume instead that

all functions are of identical size4. With all functions the same size, function F

can now be placed in only one of n unique locations. Therefore, the number of

bits of entropy from this technique is equivalent to lg(n), where n equals the

number of functions in the binary. Consequently, the lower bound on the number

of variants is equivalent to the total number of functions. For the exemplars, the

hypervisor has 374 functions, the kernel 308, and the Lighttpd program 355. Thus,

the transformation introduces at least 8.55, 8.27 and 8.47 bits of entropy,

respectively. Again, this is not a particularly impressive level of randomness

when taken in isolation.

4.2.3 Joint Entropy of the Transformations

These two transformations do not produce independent probability

distributions; therefore, their entropies are not additive. This is straightforward to

illustrate: imagine the simple case where there are two instructions, I1 and I2, each

4 If the size of one of these functions is varied, it could only increase the number of potential

transformations. This is because the differently-sized function could appear either above the

chosen function F instead of a non-size-varied function, which results in an additional case. With

all functions the same size, you only need to consider the total number of functions placed above

F, not which specific functions are placed above it.

 52

of which is one byte long. These instructions can be relocated, and each

instruction can be padded with up to one byte. In this case, all possible

combinations of the transformations yield Table 3.

Table 3: All combinations of two instructions with two transformations.

Position Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

1 I1 Pad Pad I1 I2 Pad Pad I2

2 I2 I1 I1 Pad I1 I2 I2 Pad

3 I2 Pad I2 I1 Pad I1

4 I2 I1

Without loss of generality, examine instruction I1. It appears in the first

position 2/8th of the time; the second position 3/8th; the third position 2/8th; and the

fourth position 1/8th. This distribution for I1 has an overall entropy of 1.9056 bits;

this is less than the sum of the entropy of the two individual components: lg(2) +

D(2,2) = 1 + 1.5 = 2.5 bits.

To find an analytical expression for the combined entropy introduced by

the transformations, it is necessary to derive a distribution for the position within

the binary that any arbitrary instruction can take. Again, without loss of generality,

choose the instruction at the end of the binary. Its distribution is:

ὴὼ
ρ

ὲ
ὴὼ

For n unique layouts generated by the ordering transformation, ὴὼ is

the distribution of the same instruction for that specific layout. For any individual

layout, the instructionôs distribution is normally distributed, as though only using

the padding transformation. Let h be the size of the fixed function F, z be the total

number of blocks contained in this function and all functions above it in this

layout, and s be the maximum number of inserted bytes. With these parameters:

 53

ὴὼ ͯ ὲέὶάὬ
ᾀί ρ

ς
ȟ
ᾀί ρ

ρς

Using the definition of entropy with these parameters results in the

following definition:

Ὄ
ρ

ὲ
ὴὼ ÌÇ ὴὼ Ὠὼ

Unfortunately, as mentioned in the section on reordering functions, there

is a problem in that the maximum number of transformations, n is exponential in

the input parameters. In theory, its size is bounded by the size of the power set of

the available functions. Thus, to develop a practical estimate of the available

entropy, two simplifying assumptions are made:

¶ Every function is the same length.

¶ Every function has the same number of blocks.

Recall that the first assumption was employed to gain a lower bound for

the entropy associated with the ordering transformation; the second is similar and

associated with the padding transformation. When taken in combination, they

reduce the calculation of entropy to a problem with linear complexity. In addition,

rather than integrating from -Њ to Њ, the lower limit is set to 0: for a small

number of blocks, and therefore a small number of dice, the normal distribution is

a poor approximation. Since the binary begins at location 0 and only positive

address values are possible, no actual source of entropy is removed. This

represents a more accurate representation of total entropy for transformations

when used in combination.

 54

To provide a practical estimate of the expected entropy and number of

variants, a function length is chosen equal to the average for the binary. Similarly,

the ratio of blocks to functions is chosen to be the average for the binary. Table 4

shows the resulting levels of entropy and number of variants as a function of s.

Table 4: Entropy estimation of combined transformations.

Exemplar

Maximum Bytes Inserted

8 16 64 256

Hypervisor

Entropy

17.10 17.50 18.47 20.00

Hypervisor
Variants

140,480 185,360 363,100 1,048,576

Kernel Entropy 16.24 16.60 17.57 19.11

Kernel Variants 77,307 99,273 194,860 565,690

Lighttpd Entropy 16.32 17.03 17.60 18.46

Lighttpd Variants 81,898 133,480 198,860 359,840

Note that the combined entropy is radically increased even though the

component transformations presented little apparent entropy individually. It is

also interesting to note that the Kernel entropy is less than the Lighttpd entropy

for s=8, 16, and 64; however, it is higher for s=256. This is because the Kernel

has a substantially higher number of blocks per function than Lighttpd; this

number begins to dominate the expression as the insertion size increases.

Although these results provide a practical assessment, it is also instructive

to consider the minimal case where the function size is set to 1, with 1 block per

function. This represents an extreme degenerate case, that is unlikely to occur in

practice but provides insight to the minimal level of entropy that can be expected

in practice. Table 5 shows the corresponding values as a function of s.

 55

Table 5: Minimal entropy estimation for combined transformations.

Exemplar

Maximum Bytes Inserted

8 16 64 256

Hypervisor Entropy 10.75 11.67 13.61 15.59

Hypervisor Variants 1,722 3,259 12,503 49,324

Kernel Entropy 10.47 11.40 13.33 15.31

Kernel Variants 1,418 2,702 10,297 40,623

Lighttpd Entropy 10.68 11.60 13.53 15.51

Lighttpd Variants 1,635 3,904 11,847 46,850

4.3 Performance Impact

 Injecting random bytes into the start of every function is not without

consequences, both in run-time performance and code size. To measure the

impact on the former, this research utilizes the SPEC CPU2006 benchmark suite

[64]. The benchmarks were executed on an Intel Core 2 Duo T-9600 system

running Linux 3.3.1. Initially, two baselines were generated: with and without the

-fno-align-functions and -fno-align-jumps compiler flags required to obtain the

full level of entropy in the injected code. Subsequently, the benchmarks were

transformed using the padding transformation, compiled, and executed using the

SPEC benchmarking harness. The benchmarks were executed at nice -20 to

minimize the effect of the Linux scheduler. To ensure the worst possible

performance characteristics of the transformation, the maximum amount of

vacuous code padding was generated at every insertion point. This intentionally

degrades the performance of the processorôs caches to provide an upper bound.

The results of the SPEC benchmark are shown in Figure 8.

 56

Figure 8: Benchmark results for vacuous code padding.

The worst benchmarks are 400.perlbench, 445.gobmk, and 458.sjeng

which yield performance penalties up to approximately 16%. This varied slightly

with the aforementioned compiler flags (up to 18%). The remainder of the

benchmark results indicates roughly 5% performance impact. This is low

compared to related work, such as Larsen et al.

The performance impact for the ordering transformation appears to be

negligible. It was tested in isolation using the same process as used for the

padding transformation; no appreciable performance degradation could be

measured. In addition, the performance impact of the joint transformation was no

greater that then performance impact of the padding transformation alone. This

was expected, as the ordering transformation introduced no measurable

performance degradation.

For code size, the average increase is simple to calculate. The size of the

resulting binary will vary based on the number of bits of entropy s actually

injected in each block. The average size increase is equal to the average of the

0

2

4

6

8

10

12

14

16

18

20

P
e
rc

e
n
t

P
e
n
al

ty
(L

o
w

e
r

is
B

e
tt

e
r)

Degradation

Total from -O2

 57

uniform distribution for code insertion, multiplied by the number of insertion

points. As mentioned, the number of insertion points is equivalent to the number

of blocks, b. Thus, the size average size increase for a given binary is equal to sb /

2 bytes. For the exemplars, the average code size increase is shown in Table 6.

Table 6: Average code size increase (in kilobytes and %).

Exemplar

Maximum Bytes Inserted

8 16 64 256

Hypervisor 13.8 (.59%) 27.7 (1.2%) 110.7 (4.7%) 442.9 (18.8%)

Kernel 15.3 (.55%) 30.7 (1.1%) 122.7 (4.4%) 490.6 (17.7%)

Lighttpd 6.5 (.9%) 13.0 (1.8%) 52.1 (7.3%) 208.5 (29.2%)

4.4 Adoption Challenges

The compile-time transformations require a modification to the compiler

and linker, and recompilation of programs from source. This is an obstacle to

distribution on popular closed-source systems such as Microsoft Windows, but is

feasible on systems such as Linux distributions, or in closed clouds where a store

of available binaries can be cross-mounted and loaded at will.

The proliferation of stack-guarding patches for the GCC compiler proves

that such distribution of transparent security measures is possible in open source

systems. Currently, only source-based distributions could be protected in a

widespread fashion, but the transition to runtime-based diversification will

eliminate that weakness. Obviously, the diversification has already been applied

and is running on the system it has been designed for, namely the Bear system.

4.5. Summary

 58

This chapter has described two core compile-time transformations that

non-deterministically add diversity to a program. In the worst case, where up to

256 bytes are added to every block, the code size increase ranges from

approximately 18 to 30% while the runtime overhead ranges from 5 to 18%. For

an extremely small operating system code base (less than 10,000 lines of code), at

least 40,000 variants are available, with potentially more than one million variants

attainable. Obviously, as the code size increases, the potential for variability

increases commensurately.

 59

Chapter 5: Diversity through Runtime Techniques

While a considerable amount of entropy can be injected using the

compile-time techniques, it is not sufficient. Recall that 16 bits of entropy were

experimentally determined as a minimum for protection [33]. The compile-time

techniques reach around 20 bits for the hypervisor, which is too close to the

minimum for comfort. Furthermore, the compile-time techniques have the side-

effect of a non-trivial performance penalty and file size increase. These shortfalls

of the compile-time techniques are addressable with the run-time techniques

presented in this chapter. The goals of the runtime diversity system are as follows:

¶ Significantly increase the level of injected entropy.

¶ Eliminate code size increases and remove performance penalties.

¶ Add entropy without requiring source file modifications.

¶ Transparently diversify any process running on the Bear system.

¶ Work identically for diversifying kernels and user processes.

¶ Diversify both code elements and data elements of a program.

The runtime diversity system developed here satisfies all of these goals.

5.1. ELF Preliminaries

Bear uses the Executable and Linkable Format (ELF) to store binary code

and data of programs in files. The full details of this format can be read in [62].

This section discusses the basics of the format and a small number of features

specifically used by the Bear system.

5.1.1 Binary Layout

 60

 An ELF file begins with a header placed at the start of the file. It then

contains either a program header or a section header, or both. If it contains a

program header then the file is an executable binary; the program header defines

segments. These segments describe the file addresses and corresponding memory

addresses of data that should be loaded into memory at program execution time

and their read/write/execute permissions. In general, the program header and its

defined segments describe how the loader should construct the binary image of

the process and begin execution. These segments do not merely define the code

within the binary: they can also describe the permissions that the stack, heap, and

other arbitrary elements will utilize.

 There is a parallel view of the contents of the ELF binary: that defined by

the section header. The header defines sections, which contextually describes the

blocks stored within the binary. Sections put high-level meaning to the low-level

data blocks. One major class of sections is PROGBITS (code and data used as

part of the running process image); these include the process code (section

named .text) and pre-initialized global data (section named .data). Sections also

include metadata and other notes and comments, two of which are described in

more detail below. Figure 9 shows an example ELF binary from the view of the

section header, with several text sections and associated metadata sections.

 61

Figure 9: ELF binary, section view.

 The section data is not strictly required for the runtime loading process.

However, the data encodes fine-grained information that is utilized by the

diversification process. Thus, our loader requires this section information to be

present.

5.1.2 The Symbol Table

 A symbol table is stored in the .symtab section of an ELF binary. It is not

strictly required for execution, but it is required for the diversification component

of the Bear system. It contains a list of various identifiers in the binary code,

known as symbols. Usually these are the names of functions and data variables

(these are what are primarily used for diversity in Bear), but it also contains such

data as filenames that were compiled into the final binary, the starting locations of

ELF sections, linker information, and more.

.text.main
.text.fn1
.text.fn2
.text.fn3

.rela.text.main

.rela.text.fn1

.rela.text.fn2

.rela.text.fn3

é

é
.symtab

ELF Binary

 62

 The table itself is merely an array of symbols. Each symbol has the

following C structure:

 The field st_name is an offset into a string table, providing a string name

for the symbol. st_shndx contains the ELF section that a symbol resides in, if any.

st_value contains the symbolôs location in memory: for functions or data elements,

this would be its address; for arbitrary information, it could take any value. The

remainder of the fields are unused by Bear.

5.1.3 Relocations

 Relocation is the process of connecting symbol references within the

binary code with their associated symbols. If the compiler or linker must output an

address of a function or data element that does not have a well-defined location in

memory, it instead outputs a stub value (normally all zeros) ï the aforementioned

symbolic reference. The run-time loader must then fix up these stub values with

the correct addresses, which are contained in the symbol table. Information that

ties these stubs to their associated symbols is placed in relocation entries. These

entries appear in special relocation sections in the binary (one per text section that

contains relocations), and the structure is as follows:

struct Elf64_ Sym {

 uint32_t st_name ;

 unsigned char st_info ;

 unsigned char st_other ;

 ui nt16_t st_shndx;

 uint64_t st_value;

 uint64_t st_size;

};

struct Elf64_Rela {

 uint64_t r_offset;

 uint64_t r_info;

 uint64_t r_addend;

};

 63

 The r_offset field contains the location in memory of a stub value. The

r_info field contains both the offset to the symbol being referenced by this

relocation (contained in the aforementioned symbol table), and information about

how the symbol data should be computed into a final address. r_addend is then

added onto the final computed value (this field is always zero in the Bear system).

5.2 Implementation

The basic runtime diversification system is similar to the ideas employed

in ASLR [32]. It makes heavy use of the Executable and Linkable Format (ELF)

and the information available in this format. The Bear loader, rather than placing

ELF sections into their normal memory locations as defined in the ELF file,

moves all ELF sections into non-deterministic positions. By default these sections

represent the entire code of the binary (ELF section .text) and the entire set of

predefined data elements (ELF section .data). However, by using standard

compiler flags it is possible to vary the level of granularity down to individual

functions (-ffunction-sections in gcc/clang) and individual data elements (-fdata-

sections in gcc/clang). These flags create one ELF section per each function

(named as .text.fnname) and one ELF section per data element (named

as .data.varname), rather than a single text section (.text) and data section (.data).

Thus, unlike in ASLR, our unit of diversity is the individual function or individual

data element. Figure 10 shows, at a high level, how the runtime loader might

diversify the functions within a binary:

 64

Figure 10: Example binary and corresponding loader diversification.

After loading into memory the program segments defined in the ELF

binary, the loader then scans the section table. Any section marked as a

PROGBITS section (representing code or data) is noted to be a diversifiable unit.

The loader takes these units and moves them to random locations in the process

address space. It then performs this same process to the stack base, as well as any

other OS-defined special variables that reside in the process address space.

Unfortunately, this process of moving sections around in memory breaks

the process control flow. Code and data that refers to other code and data, such as

control flow changes (jmp and call instructions), refer to their endpoints via

memory addresses. When these memory addresses are changed, the whole process

breaks.

.text.main
.text.fn1
.text.fn2
.text.fn3

Binary

RAM

main()

Empty Space

fn3()

Empty Space

fn1()

Empty Space

fn2()

é

 65

Figure 11: Control flow within same diversity unit.

The first case is illustrated in Figure 11. In this case, both the referencing

code (the jmp instruction) and the destination are within the same diversity unit

(in this case, the function called fn). Thanks to the addressing scheme used in the

x86-64 architecture however, this is not a problem! However, the x86-64

architecture introduced a concept known as instruction-pointer based offsetting.

This allows addresses to be referenced based on the current instruction

pointer, %rip, and is designed to ameliorate exactly this issue. When an entire

diversity unit is moved, any references both starting and ending in the same unit

are made based on an offset from the starting instruction will be the same no

matter where the diversity unit is placed. Thus, the first case is not an issue the

loader has to solve ï the architecture has already solved it for us.

Figure 12: Control flow between two different diversity units.

push % rbx
mov (%rax), % rax
jmp 0xf0 (%rip)
é

pop % rbx
é

0x100
0x104
0x112
+0xf0
0x202

é

Section: .text.fn

push % rbx
mov (%rax), % rax
jmp 0xf0 (%rip)
é

pop % rbx
é

0x500
0x504
0x512
+0xf0
0x602

é

Moved Section: .text.fn

push % rbx
mov (%rax), % rax
jmp 0x550(%rip)
é

0x100
0x104
0x112

é

Section: .text.fn1

pop % rbx
é

Section: .text.fn2

0x720
é

pop % rbx
é

Section: .text.fn2

0x97d5
é

 66

The second case is illustrated in Figure 12. In this case, the referencing

code (again, the jmp instruction) and the destination address are in two different

diversity units. Instruction-pointer based offsetting has been emitted by the

compiler, but this is improper. When the loader moves the two units to a random

location, the relative difference between their locations will be changed ï but the

offset used by the jmp will not change! This breaks the process control flow.

Similarly, references to global data elements will also be broken. The loader must

resolve these broken references, or the running process will exhibit undefined

behavior when it attempts to utilize a reference.

The process for resolving these references is virtually identical to the

process used for dynamic linking of shared libraries. The compiler, when finding

a cross-section function or data reference, generates a stub value instead of the

normal instruction-pointer offset: this is the relocation, as discussed in section

5.1.3. With the relocations, the loader can fix up all the references that it broke

when it moved the diversifiable units to nondeterministic locations.

Using this information, Program 5 illustrates how the loading process

operates:

 67

Once all of these steps are performed, program execution can proceed as normal.

The same process is performed by both the hypervisor and the kernel, with the

only differences being how memory is allocated when the ELF segments are

initially loaded into memory.

5.3 Analysis

This process satisfies three of the core properties of diversification

described in Chapter 4: namely that all code and data is shifted out of position,

with all function entry and exit points placed at an unpredictable location.

Specifically, this unpredictability has entropy equal to the number of bits

available in the process address space. For Bear running on x86-64 architectures,

this admits to 39 bits of entropy corresponding to approximately 549 billion code

variants. This diversification is achieved by manipulating the location of pages in

the page table structure.

Loader:

Read ELF Segments (Code and Data) into memory

Read ELF Symbol table

Read ELF Section table

Read ELF REL(A) sections into array

Associate PROGBITS section with REL(A) section [if

exists]

For each PROGBITS section:

 Move PROGBITS code/data to random location:

 Via moving the location of its pages

 For each symbol within section:

 symbol < - newly - moved address

 For each relocation with r_offset within section:

 r_offset < - newly - moved address

// Do the same loop, but for stack and other elements for

// which relocation is desired.

For each relocation:

 memory_at(r_offset) < - SYMBOL_FROM_RELOC(r_info)

Program 5: The diversifying loading process.

 68

The page system on x86-64 has four levels. The top level, the Page Map

Level 4 Table, has 512 entries, each of which corresponds to a 512 gigabyte

region of memory ï specifically, 512 of the next level. The Bear system utilizes

the first of these entries to hold the data for user processes. The next level is the

Page Directory Pointer Table, with 512 entries, each of which corresponds to a 1

gigabyte region of memory ï specifically, 512 of the next level. That next level is

the Page Directory, with 512 entries, each of which corresponds to a 2 megabyte

region of memory ï specifically, 512 of the next level. That next level is, finally,

the Page Table. The page table itself contains 512 pages, and each page is 4

kilobytes in size.

Each relocatable section begins on a page boundary, and stretches for a

number of pages which cover its entire length. To perform the relocation, these

pages are remapped from their original location to a new, randomly-chosen

location in the page table structure.

Due to the use of page tables to perform the relocation, the amount of

entropy gained is somewhat less than the theoretical maximum. As mentioned

above, on the x86-64 architecture a page is four kilobytes and requires 12 bits to

address the range of values within a page; thus, the lower 12 bits are unavailable

to the diversifier for the page remapping. The entropy gained by this process,

therefore, is 39 ï 12 = 27 bits for each relocatable section, corresponding to 134

million variants ï less by three orders of magnitude, but still substantially higher

than the 20 bits introduced by the compile-time techniques.

5.3.1 Performance Impact

 69

 The run-time transformations do have an impact on the performance of the

system. This impact, however, is only felt on program start-up: all the work to

diversify the program is performed by the loader before the program even begins

execution. The hypothesis is thus that any benchmarks should show minimal

performance degradation when diversity is enabled. There could be some minor

degradation: code becomes more spread out (potential caching changes), and

rather than instruction-pointer based offsetting the compiler instead uses indirect,

register-based jumps to enable the relocation process.

 The SPEC benchmark suite is currently in the process of being ported to

the Bear system, so SPEC numbers for the run-time transformations are

unavailable at the moment. Instead, four tests were developed to benchmark the

diversity changes. The first two tests are add and multiply: functions are called

which perform a large number of additions and multiplications; these have been

ported from the AIM9 benchmark suite [65] and examine whether diversity will

degrade CPU-heavy workloads. The third test is the fork() test, which forks a

process and measures the execution time of the forking; this is a control to make

sure that our ñup-frontò performance degradation is being properly measured. The

final test is the function call test, where a series of four functions are chosen from

eight random choices and called; this examines whether or not the indirect

register-based jumps emitted by relocation cause any performance degradation.

The hardware performance counters for reference ticks in the Intel x86-64

platform were used to measure the CPU time spent in each task.

 70

 The system benchmarks were run with and without diversity enabled. For

the add, multiply, and function call tests, no noticeable degradation of

performance was measured by the hardware. For the fork test, however, there was

a 535% performance degradation when diversity was enabled ï while a fairly

large change, it is exactly what was expected to be seen. This signifies that all of

the performance degradation necessary for enabling diversity is entirely front-

loaded: it is only seen when starting new processes, and it has minimal effect on

the running process itself.

5.3.2 Code Size Impact

 Unlike with compile-time techniques, there is minimal impact on code

size due to the diversity work being performed at run-time, after the binary is read

from disk. That said, there is still a small impact: relocated jumps rather than

instruction-pointer offsetting is slightly more verbose.

 An instruction-pointer-based offset requires five bytes (call instruction and

offset), and a relocation jump requires 12 bytes (the movabs instruction, the offset,

and the call instruction). There are 1166 call instructions in the Bear hypervisor

and 1334 call instructions in the Bear kernel, resulting in a size increase of 5.6

kilobytes and 6.5 kilobytes, respectively. This represents a percentage size

increase of 0.24% and 0.23%, respectively ï an extremely minimal disk size

increase, and several orders of magnitude less than the increase created by the

compile-time transformations.

 71

Chapter 6: A Hybrid Technique

Unfortunately, the run-time diversity transformations described in this

chapter do not satisfy the third property of diversity outlined in Chapter 4, namely

that all jump offsets within all basic blocks are diversified. The addresses are

changed for references between sections, but not within sections. Furthermore,

remember that the system loses 12 potential bits of entropy in the runtime

diversifier due to the constraints of the paging system ï the difference between 27

and 39 bits of entropy is three orders of magnitude of variants! These issues are

resolved by combining our run-time and compile-time techniques into a hybrid

model as illustrated in Figure 13.

Figure 13: Hybrid diversity system.

In this hybrid process, the system is first compiled with the compile-time

padding transformation (described in section 4.1.1) multiple times. Then, when a

file1.c file2.c filen.cé

Compile w/

Diversity

Binary 1 Binary 2 é

Runtime Runtime Runtime

Image Image Image Image Image Image

