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Abstract

Computer security has come a longwsince the days of the firgtternet worm. With

the spreading and commercialization of the Internet, the stakes dudten higher.
Viruses existed and spread before most computers were online, glabaknetworking

has spreadn interesting new phenomenbas arisen: homogenous computivast
swathes of internetonnected computers can be placed into distinct caésgsuch as
ALI nuxX 3.1 machineso and AW ndows 7 ma c |
vulnerabilities that work across the entire class. Thus Itbernet has acted as
vulnerability amplifier if you infect one, you can infect manyit has never beeeasier

to infecta large numbeof systems. This thesis aims to raise the difficulty for attackers to
spread exploits easilyncreasing the failure rateassociated with using the same exploit
across multiple machingslenyng surveillanceof target machies and binarycodes
denying persistencen a target sstem once it has been exploiteahd eliminating
common exploitation technique¥hese goals are accomplished éyhancingnon
determinism inoperatingsystems: utilizing dypervisorto refresh microkrnels and add
restrictions on thie operation,addng diversityto microkernels and usrocessesand
adding camouflageto network protocolsCollectively these techniques serve to make

each running systemmique, unpredictabl@nddifficult to identify.
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Chapter 1: Overview

1.1 Problem

How can we mcrease attacker workload to reduce ithcidence of

computer networlattacks against critical infrastructure?

1.2 Hypothesis

A radical increase in nedeterminism within operating systems can
require increased attacker time, effoand failure, requiring increased

levels ofattackersophistication.

1.3 Approach

This thesismtroduces notdeterminism through four core mechanisms:

1 Gold-standard Refresh:Random refresh of potentially compromised
system components (e.g. microkernel, device drivers, etc)nove an
adversaryodos ability to persist over | on
invalidating surveillance information associated with the operating system
signatureessential in determining the available vulnerabilities.

1 CompileTime Diversity: Introduction of nondeterminisminto source
code at compile time tthrottle vulnerability amplificationensuring that
the same vulnerability cannot be used in multiple copies of the code.

1 Run-Time Diversity: Dynamic replication andrandomization of code at
load time refresh taunderminereverse engineering aridrther invalidate
surveillance.

1 Camouflage:Disguising an operating system to appear as an alternative



system, with different vulnerahiiles, to complicate system identification.
The combination othese techniques produces a new form of operating system
that increases attacker workloadver multiple complementarydimensions
making it significantly more difficult to determine the vulnerabilities present on a
system, apply the same attack to multiplests, and establish a l|cfiged

presence on a system to achieve effects.

1.4 Contributions

The core contributions of this thesis are:

1 A novel, minimalist hypervisor capable of rdeterministically refreshing
and diversifyinga hosted kernel; kernels mag turn use the same
techniques to refresh user code and potentially comprondsstte
drivers [1].

1 Compiletime techniques for introducingtatic diversity into operating
systems and user codd.|

1 Runtime techniques that admporal diversity when cmbined with
refresh BJ.

1 A hybrid approach thatombines compiléime and rurtime diversity
with replication to radically increase the degreé nondeterminacy in
systems. This approach hasdest overhead in performance and code size
[3].

1 Analytical mockls that quantifythe level of nordeterminism induced by

diversity [2, 3].



1 Application layer techniques that camouflaggrvers by modifyinghteir
network traffic signaturest].

These systems and techniques have been demonstratpobof-of-concept
implementations and exemplars. The hypervisor has been implemented en multi
core blade servers and Dell XPS workstations, supporting both a custom
microkernel and the BSD operating system. The contpile techniques have
been implemented as a Clang compilkergm and demonstrated by diversifying
the microkernel, an industrial strength web server (lighttpd), and the SPEC
benchmark suite. The rdime techniques have been incorporated into the
hypervisor and microkernel loader used to execute the microkerdelusar
processes. Finally, the camouflage techniques have been used to circumvent
common natork scanners, such as nmap f&nd Nessus [6 disguising a
Microsoft Exchange running on Windows 2008 Server as Sendmail running on

Linux 2.6.

1.5Metrics and Analysis
Unfortunately, it is not practical tdirectly assess the increase in attacker
workload,as it is dependent on a numbesabjectivefactors thainclude:
1 Theavailable manpower aridvel of expertise of the attacker.
1 The creativity of the attacker.
1 Thetype andevel of vulnerability of the target system.

1 The availability of multiple access paths, e.g. remote exploits, privilege

escalations, supply chain access, RF paths, etc.



As an alternativethis thesistherefoe focuseson the degree of unprexdability
induced in systems and quantifidggs throughthe analytical use oéntropy
Unfortunately, not all ofthe techniques admit to direct measurement and thus
constructive argument is usedtheir place where appropriate. These arguments
are basedn the added steps required to achieve a point of presence, or the

increase in technical sophistication required to overcome a particular barrier.

1.6 Conventions

At several points throughout this thesis, abstract code is used to describe a
process. In tis abstract code, BOLD, ALL CAPS word represents an assembly
i nstructii oma.r KA riepresents the storing of s

with a A/ / 06 1 s a dacarestdgedfthevppcesso mment on t h

1.7 Outline of the Thesis

The structuref the thesiss divided into seven chapters:

Chapter 2 introduces the threat model, core ideas, and related research
associated with vulnerabiks and their mitigation This serve to povide
background and motivation for the remainder of the thesis.

Chapter 3 describes the hypervisor, created as a part of this thesis. It
describes the design philosophy and the specific details of its inner workings,
along with bootstrapping details. It also introduces the fundamental protections
provided bythe hyperisor to running kernels.

Chapter 4 describes the comgilee techniques developed in the thesis
and analyzes the level of diversity that can be obtained along with the associated

overhead.



Chapter 5 describes the rtime techniques incorporated into tlwader
and integrated within the hypervisor and kernel. These techniques are contrasted
with the compiletime techniques in Chapter 4 and analysis quantifies the gain in
diversity and performance.

Chapter 6 developstaybrid modelthat combines the methedh Chapters
4 and 5 and analyses the combined technique. Code replication is then added to
further increase nedeterminism.

Chapter 7introduces network camouflage and describes how it operates
on the system network stack.

Chapter &oncludes the thesisnapping out directions for future research

and lessons learned.



Chapter 2: Core Ideas and Related Work

2.1 Threat Model

In order toprovide context fothe work presented in this thesisis useful
to providea general threat modé&br network attack involving remote control7].
The model used here is presented in Figure 1 and combines typical activities
taken from a broad variety of attack clasddse threamay involve several steps
including surveillance to determine ifa vulnerability exists [§, use of an
appropriateexploit or other access methad establish an implar8], privilege
escalationwhere possiblg9], removal ofexploit artifacts, and hiding behavior
[10]. Surveillance may involve obtaining a copy of tiaegetsbinary code an

using reverse engineering[11,12] or fuzzing [13 to locate additional

vulnerabilities to facilitate a broad range of attack vectorscluding return
oriented programminfL4]. The implant themersistsfor a time sufficient enough
to carry out some malisus effect obtain useful information, or progate

intrusion to other systems.

\ Escalate Privileges / Hide
Initial ]» Ramove
andch / Artifacts

. Kernel = Escalate
Surveillance : —
Persist S '°fo
(months) lTIme \“\3?«?%, \

|
(months) mpant
Effect Surveillance

Detected & Remote
Exploit

Figure 1: Exploitation threat model.



Unlike the time to execute an expldihe time spent in surveillance and
persistence may range from minutesrtonths or even yeadepending upon the
intended effect. Moreover, the presence of an intrusionmaagrbe detected by
network defenses but instead may be recognirelitectly due to either a

deviation from expected behavior, or may be derived frontliggace sources

2.2Vulnerabilities and Vulnerability Amplification

The hidory of network intrusions employing differingelementsof the
model presented in Section 2ls been a continual arms race between defenders
and attackersVulnerabilities arerevealed in hardware and software systems,
attackers develop exploit techniques to take advantage of them, adlyetite
attacks are discoverethd defenders develop appropriate protections and patches.
Subsequentlymore advanced exploits that bypass pinotections are introduced
and the cycle begins anew

Buffer overflow attackgrovide the mostwidely recognizedexample of
this pattern 15]. A complete description of the techniqudpng with how to
identify a vulnerabilityand exploit it, can be foud in [16. The essence of the
idea is to overrun a programming buffer withexpected input so as to cause
installed software to make an unintended transfer of control; typically to
i mpl anted attack c¢ od eSin¢edidcaveryofthismmfe d fshel |

attack a variety ofsolutions have been developed to specifically mitigate this

L A survey of available protections, as wellrasre details on buffer overflow techniques, can be

found in[17].



particular form ofvulnerability. Intel, for example, introduced theo-execute bit

for page tablesalso known a®ata Execution Preventio(DEP). This concept,
taken from the MULTICS [18] system, provides a mechanism that allows
operating system developers to ensth@at memoryis either writable or
executablebut neveboth simultaneouslyThere are not only hardware solutions

i softwaresolutions have also been invented, such as runtime size checks for
buffers utilized on the stack ).

Unfortunately, the advent of DERnd other solutionded to the
development of alternativexplatation techniques, whiclbypassthe protection
Some of the first attacks designed agaiD&P merely directed the running
process to callfunctions provided by the operating systdm disable the
protections; they themproceeeéd with the classic buffer \eerflow [20]. These
functions seem insecure at first glance, but are actua#fut Some applications
require the sampieceof memory to be both writable and executable. One such
applicaion is a justin-time compiler: It compiles (writes) a highlevel
programming language to machine code and thercutest. Just like a binary
loaded from disk, the compiled code must be stored in memory at some location
beforeit is placed onto the processor for execution.

Eventually attacks that bypass DEP execution prevention were
generalized. Ifa system function for disabling protections could be called, why
not call some other librarfunction instead? This became known asr#étarn-to-
libc attack [2]. It then became clear thétan arbitrary library functionauld be

invoked otherchunks of preexisting code could also be used. These chunks need



not necessarilybe completefunctions, but rathersmall assemblyfragments
already loaded onto the system. These chunksjown asgadgets[22], can
perform some smakhmount ofcomputation (add, multiply, compare), and then
redirect system control flow based @omputeddata written in the process
address spac&he most prevalent opportunity to transfer control was provided by
the ret (return) assembly instruction alable throughout operating system
images to return from functions. Thigstruction uses the system stack to
determine which address the processor should jiopp convenient location to
store redirections. This form edploit was namedeturn-oriented pogramming
(ROP) [23. Although it may notimmediately appear particularly useful, a large
codebasesuch aghe C programming librarylipc), linked to every user process
on the systengontairs a sufficientnumber ofgadgets to be Turingomplete [23
allowing any arbitrary program to bexecutedA large set of gadgets is not even
required formany common exploitatiotasks, such as the disabling DEP, and
even programs as small as /bin/true (without use of the linked C library)ecan b
exploited in this &shion [23.

Unfortunately, the fact that relatively few varieties of operating system
are available worldvide, compared to the number of installed systeanglifies
the impact of these vulnerabilities: A single exploit can often be employed against
a huge number of unpatched systems. Moreover, the increasing prevalence of
cloud computing tends to enhance this amplification by radically diminishing the

variety of installed system variants.

2.3 Stealth and Persistence



Oncea vulnerabilityhas been discoved andan exploit developed, it is
possible to establish a remgpeint-of-presence similar to a remote shell. A
common next step is teemove the forensic trail associated with accdss
deleting files, modifying registry keys, etand hide anyon-hog activity. This
job is often performed by aootkit T a program delivered by the exploit and
operated unittingly by the infected machin®neof the oldesstealth techniques
is to bundle, with the rootkit programs that replace common system
administraion programs 10]. For example, thes program lists all processes
running on a systenm u t t he r ootpswaduld fail tv eepos then o f
presence of theootkit. This technique eventually gave way to returnfatse
values for system calls thps would use to gather the list of processes, bypassing
the ned for replacement programs [10

Once a rootkit is resident on the system, how doesersis® If it exists
purely in volatile memory, such as a modification to the running kernel code, it
will be removed upom systenreboot. The rootkit thus must have sonogher
residencein nonvolatile storage. The hard disBrovides the oldest known
example[24], but some hardware contains maolatilie memory that can be
modified with proper system privilegga5]. To survive any kind of refresh like a
reboot without the system being exploited anew, the rootkit must utilize one of

these devices.

2.4Reverse Engineering

It is possiblehat an attacker may have access to a copy of the source code

for some or albf a system, it might bepen source cod®r might be provided by

1C



aninsider. Alternatively, the poinbf-preence estdished in Section 2.Inight
be used to extract a copy of the runninggloy code directly from memory.

Having obtained the source codteis then possible teeverse engineet
to discover vulnerabilitiegnd develop additional exploitBuffer overflows and
othermemory corruption attacks require knowledge of the distance between the
vulnerable data and the interesting parts of tlaekst Returro-libc attacks
require knowledge of the location inemory of the desired functions.efirn
oriented programming requires knowledge da#sirable gadgets.All of this
information can be discovereeither through either static analysis-- offline
disassembly and reverse engineetimgaddresses at resor dynamicanalysis--
instrumentingand observinghe code while it is running. This analysis can also
provide insights into how the attacker might best hide their tracks, or interrupt and
reaume normal operation of the system via important addresses in theAcode.
wide variety of tools are available to conduct this analysis, includingple

disassemblerske objdump[26] and complex tools such €3A Pro [11].

25 Protection Mechanisms

Many of the fundamental conceptsow used toprotect operating systems
are derived from theengineering principal of separating concernsand
encapsulatiorembodied in the MULTICs operating systet@][ This resulted in
several innovationgcluding thedivision of an operating systenmto layes, or
protecedrings, through hardware mechanisms tBaparate user processes from
the systemkernel and each otherMU L T | @l$osncluded the concept of

read/write/executeprotection bits on memory segments, where bBasegment

11



maintainsindependent access controls and a fault isrgéee if software violates
the protections Read and write access controlssubsequently became
commonplace in hardware platformsach as thdntel x86 processorsExecute
protection has ol recently regained currency through the @6 platform via
theintroduction of anoc-execute biinto 64bit page table entrie27].
Although techniques have been found to bypbasic protections on
occasion their utility as an organizing principal aadirst line of defense cannot
be overstated. With thadvent of returnto-libc attacks andreturn-oriented
programming the presence of basic protections allowed the development of
techniquedo specifically target these advancements in exploitatidgoendently
For example, compiletechniques were developed to mitigagturn oriented
programming byscrubbing usable ggéts out of the assemigbyocess [2&9].
Thecontinual arms race between exploit and mitigatialfs into question
the entire apprach associated with detecting intrusions or reacting to discovery,
through sensors, patches, and defense tool rules. In this situation, the defender is
always forced to react to the attacker and takes few proactive steps to undermine
an attackes actionsbefore they are known. Instead, this thesis proposes to focus
onincreasing attacker workloady complicating each of the component activities

encapsulated in the thread model.

2.6 NonDeterminism and Diversity

Cohen [30 and Farest et al [31 have discasedideasfor using non
determinism to prevent exploitatiom addition, Forrest has implemented a basic

stack frame space randomizer which, while minimal, was sufficient to disrupt

12



many buffer overflow exploits. Unfortunately, noncrete metricare povided to
guantify the level of effective diversity.

The most prominent approathat has evolveds Address Space Layout
Randomization (ASLR), deloped by the Linux PaX team [BAnd later used in
many other operating systems including variants of WagdoThis technique
introduces diversity by randomly relocating the base address of libraries, program
text, stack, and heap, at runtimdough it does not attempt to perform any
reordering or randomizatiowithin these memory segmentshis removes the
ahlity for attackers to statically prdetermine the address of functions and
gadgets used to build exploits or arbitrary code fragnmiedenyingsurveillance
rather than eliminatinthe vulnerabilities hemselves.

ASLR is believed to be effective against both retigrtibc attacks and
returnoriented programming. Unfortunately, a minimal level of entropy is
required to protdcagainst brutdorce attaks [33. Early analytical work to
guantify the impact on attacker workload has already been conducted; it
concludes that approximately -bis of entropy, corresponding to 65,586ique
code addresses within a process image, are required to protect bga@d$orce
attacks within reasonable timeframes i.e. 20 minutes. There also exist methods to
eliminate address space randomness through techniques that bypass the ASLR
implementation altogether using sptly crafted format strings [34 It is
interesing to note that ASLR was developbkdforethe advent of returoriented
programming as a general mitigation against static analysis. This speaks well of

the general approach of introducidigersity to deny surveillance.
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Other work hasalsobeen performedh the space of diversity: Instruction
Set Randomization encrypts the executable code and grants a level of entropy
equal to thestrength of the encryption [B5Unlike the research described here
this approachrequiresarchitecture support fasome formof emulation [36, or
virtualization [37. The diversity approach described in tii®sishas none of
these restrictions&nd can be strengthened kgditional techniques including
memoy encryption 7,38, hardware hiding 39], and nondeterministic rekg
however it does require accessgource code

Tanenbaum has used an alternative approach to protect kernel data
structures [4Q. Unfortunately, his work uses compartmentalization and
modularization of code limited to microkernel desighghile this research
involves a microkernel, it targets more than just keda¢h structureghe ideas
can also be applied to user processes and device drivevice drivers are
especially problematic, as they contain error rates up to seven times higher than
therest of kernel codpt1].

Several authors have examined the use of diversity to directigify
binaries on disk For example, Pappas et al [48eveloped a tool that would
diversify compiled binaries by modifying instructionghis removes the
immediate vulnerability (while introducing new gadgets) and denies offline
surveillance, but would not protect against aacker that successfully obtaias
copy of the diversified binary; the research described in this thesis would also
defend against such surllance Similarly, Kil et al [43 developed a tool to

diversify binaries by relocating segments and reordering within segments, but the

14



code within the segments is unchanggdis work has the same weakness as the
tool developed by Pappas et al.

Somereseachershave examined diversityot to deny surveillance, but to
specifically disrupt returoriented programmingln an upcoming paper at the
2013 International Symposium on Code Generation and Optimization, Larsen et
al present a diversification schemé the compiler level thatmodifies the
instruction generatioralgorithm to remove gadgetsentirely preventing their
emission by the compileiThis has no value in denying surveillance, and instead
only targets returroriented programming. This thesdoes not perform any
gadget removal: instead, it aims to increase the unpredictabilail afidresses.
This disrupts the positioning of gadgetgnying surveillancehut does noitself
change the instrucn stream or program semantics.

Other diversifican techniques have been introduced that are similar to
the work described in Chapterahd 5 Kil et. al. include a similar method of
function reordering in theiown binary rewriting tool #3]. The methoddescribed
in this thesis, on the other hangmplements this functionality directly in the
linker (for Chapter ¥ andatruntime §or Chapter $to denysurveillancekGuard
[44] uses a similar technique of padding the start of functiansoperation used
in this thesis and described in ChaptetHéweve, they only do this to protect
and diversify the kernel, not user applications. Furthermore they use a NOP sled
to change address locatiorihe work describedn Chapter 4specifically use
random dataso that any jump attempt will likely crash immeeigt While

ASLR by default does not randomize within the text segment, this feaase
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eventually introduced with the Code Islands techniqued4f]. [This utilizes
several similar features to our rtime diversity system; howevethe work
described in Chapter B not bound by the legacy requirementstioe Linux
operating system and thusedmot suffer the same performance penaltigh

dynamic linking it is also used to protect the operating system itself.

2.7 Camouflage

One method of surveillance is to usaetwork scannersuch as nmap [5
or Nessus [p These scanners can detect which software and operating systems
are running on target machines, as well as their specific versions. This
fingerprinting effectively provides an attacker with a roadmap of how to exploit
the machine.This thesis presents a method fbenying surveillancalirectly
throughnetwork camouflage

Fingerprinting ispossibleby virtue of the differences in networkand
applicaton-layer protocol implementationfor different operating systems. The
protocol specifications typically leave many implementation details up to the
developer. This allows for multiple implementation strategies and ideas to be used
in alternative productsWhen these design details diverge between competing
systems, théifferences can be observed imerely using the protocdNmap and
Nessus both exploit the differences in implementation details for their
fingerprinting process. For example, for operatisgstem detection they have
databases specifying which details are expected on which system. By examining

the response to TCP/IP traffic, they discern which operating system the responses
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must have originated from. Similar systems exist for applicdfige protocols
in Nessug446].

Since service detection is performed by examining implementation
differences, it is possible to deny surveillance by modifying these differences
Early uses of thisdea, implemented in Morph [{7were able to transparently
camouflage a system to appear as Windows 2000, OpenBSD, or Linux 2.4. The
concept has also been used in FreeBSD, which scrubs its fingerprint so that it is
not detectable by scanners [4&8.inux 2.4 provides a program called IP
Personality that allows it ttake on alternative opdimag system characteristics
[49]. All of these packages focus on manipulating TCP/IP protocol details to
prevent operating system detection. Unlike these solutions, this thesis focuses on
denying surveillance ofboth the TCP/IP prtocol, to prevent OSevel
fingerprinting, and the application layeig prevent discovery of the specific

programs being ruan the server
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Chapter 3: Gold-Standard Refresh

To explore the ideas neaeterministic refresh, code diversity, and
camouflagat is useful to consider how these techniques might form the basis for
a fromscratch operating system desigdurrent operating system designs have
sought to utilize astatic base of trust and extend trust into software through
deliberate layeringg0]. A wide variety of vulnerabilities have appeared that
undermine kernel security allowing attackers to implant code, hide, and persist at
the highest levels of privileg&]]. Furthermore, studies of open source code have
indicated that th@umber of vulnerailities is directly correlated with the size of
the code basgs2], indicating that there is substantial value in the intellectual
process ofeducing the attack surface

The approachdescribed hereassumes that adversaries will conduct
surveillance will be successful in gaining access, and palisist undetected o
mitigate the risks associated with remote contitbke current kernel, user
processes, and device drivers are periodicdibgarded This can be achieved
when they are momentarily not insej through a collaborative program of
interruption, or just prior to the onset of a tactical operafldrey are replaced by
new instances, bootstrapped in the background freedonly gold standards
The cumulative effect of this change in design stgleto increase attacker
workload by continually invalidating surveillance data and denying persistence
over timescales consistent with tactical missions. Unlike other approaches to
computer securityf53], no attempt is made to detect intrusions: instehid,

researchfocuses on continually validating, preserving, and-astablishing the
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ability of a mission to proceedlhe intent is to cause the attacker to take more
time, make more errey and force attack actions site the OODA loop of the
defender; effectely removing the threat withoulirectly confronting it.

These concepts have been incorporatedamew, fromsaatch operating
system desigii Bear i which operates on 6#it, x86 multicore blade servers
and Dell workstationsThe full system is degted in Figure2 and is composed of
a minimalist micro-kernel with an associatechypervisor that shars code
extensively taexplicitly reduce the attack surface. The miksynel also operates

independentlyn ARM M3, M4, A8, and A9 processors.

User Sl rvP BRI Drivers
Processes Stack

———————— Message-Passing API

Page Process System

Micro-kernel Tables Scheduler
(R/W/X)

Refresh Task

Ext. Page
Hypervisor Tables Kernel Refresh
(R/W/X)

Trusted File
Store

Network Interrupt

Hardware SERREEEE: A Ll Card Controller

Figure 2: The Bear operating system layers.

The core functions of scheduling user processes and protecting them from
each other are handled by the mikeynel [1]. All processes and layers are
hardened by strictly enforcing MULTICSyle read, write, and execute
protections 18] using 64bit x86 address translation hardwa&milarly, the

hypervisor enforces these protections on kernBgs calculated reduction in
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versatility is unlikely to impact military applications but explicitlynreves
vulnerabilities associated with code execution from the heap or stack. All
potentially contaminated user processes, device drivers and services are executed
with user level privileges and are strictly isolated from the mikesnel via a
messaggasig interface. The system task, executing with kernel privileges,
mediates between processes and the kernel to implement the interface. Unlike a
conventional rendezvous mechanisB¥]] this asynchronous, buffered design
provides a single uniform treatmeont system calls, inteprocess, and inter
processor communicationfhe interface also supports distributed computing
through an MPRlike [55 programming model that maps processes to processors
using a user level demorMP.

To prevent persistence in theiamo-kernel, it is nordeterministically
refreshed from a goldtandardmage in the trusted file stotgy the hypervisor
[56]. This store is currently realized throughreadonly RAM-disk accessible
only from the kernel and hypervisor; however, it coalternatively be realized
via readonly memory (ROM) or via an owdf-band, writeenabled channel to
flash on new hardwarelhis minimalist hypervisor design suppors only the
operations required to bootstrap a new mikeonel and change its network
propg t i es (e. g. |l P & MAC address) so as
data.lt is significantly different frontraditional hypervisorshat aimto support a
general virtual machine execution environmesii-$9], admits to considerable
code sharingvith the microkernel, and represents a substantial reduction in the

system attack surfacel]] The PXEboot based bootstrapping process
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incorporated into the hypervisor applies diversifying transformations to each new
kernel. This ensures that every kensalinique in terms of its addresses, throttling
vulnerability amplification and rendering prior surveillaratgsolete The current
running and bootstrapping instances of the mi@mel are isolated in hardware
through extended page tables, implementét imtel Vt-x extensions. Similarly,

the networkdriver is isolated through a mapping scheme based on Intedl VT
extensions

To prevent persistence in compromised device drivers and services, the
micro-kernel randomly and nedeterministically regeneratebem from gold
standard images resident inrasted readnly file store This process is achieved
using the same diversity transformations applied by the hyperiistike the
MINIX re-incarnation process4], regeneration is carried out without regido
the perceived fault or infection status. User processes can also be refreshed
through prearranged or designated schedules; for example, every few hours, at
night, or just prior to a tactical mission.

The diversification techniques described in tieisearch are applied every
time any component of the Bear system is refreshed: when the hypervisor reloads
a kernel or when the kernel reloads a device driver or user process. As a result,
even if an adversary were to obtain a copy of the entire binaryat@dg point in
time, and invest the effort to reverse engineer it to find vulnerabilities, by the time
those vulnerabilities could be exploited the entire address space of the system

would have changed and any existing persistent presence eliminated.
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3.1 Hypervisor Design

TheBearincludes a novehypervisor hasncorporatesix coredesign goals:
1. Diskless Readonly Bootstrapping
2. Nondeterministic Kernel Refresh, DenyingiBistence.
3. MULTICS-style Protections pplied to Kernels.
4. Processor Staterétecton.
5. Attack SurfaceMinimization
6. Kernel Dversity, Denying Surveillance and Throttling Vulnerability

Amplification.

This chaptedescribes the realization of Goals 1 through &al@®, related
to diversity, is covered in Chapters 4 and 5. For now, imnortant to simply
recognize that the hypervisor diversifies kernels and processes whenever they are
reloaded.

The hypervisor was developed to supportly the coregoals Unlike
popular systems such as KVM, Xen, and VMW tré not designed to provide
generic virtualization environment capable of supporting arbitsystems
Althoughthe Beamicro-kernelhasalso been implemented &RM architectures,
the hypervisor only operates on tk86-64 platformusing its VFx hardware
support for virtualizéon. This platform uses several structureand ideasfor
processor control and memory protection, suctha< R0 andCR4registersreal
mode, protected mode, long mode, segmentation, GDT and LDT. Appendix A
includes more information on these structuaesl their use, for those who lack

familiarity with the basic platforms.
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The remainderof this chapteris devoted tothe inner workings of the
hypervisor. These detaitperatecollectively at the lovestlevel of the systento
realize thesix core goals. Tle system bootstrap process described first,
followed by theenabling of virtualizatonand t he hypervisorods mai |
the groundwork of the hypervisadetailed this chapter then discusses how
virtualization can be used to protect kernels andradksign considerations used

in creating the system.

3.2 Goal 1: Diskless Read-only Bootstrapping

The hypervisorbootstrap process takes the system from a powadfed
state to a running hypervisor. It must load all necessary system image files, set up
memory protections, and entéang mode-- a protected processor state required
to enforce memory protection. Most moderperating systems use long mode;
however few enter this mode directlyinstead operating initially in an
unprotected and vulnerabkea mode during bootstrappingo support legacy
capabilities Circumventing this legacy suppostith a fromscratch desigmot
only simplifies bootstrapping but alseduces the vulnerable time in real mode.
Figure 3 provides a simplified overview of the @et bootstrapping process. It
contains three concrete stages that incrementally bodt protectthe system
MBR, Stagel, and Stag2 bootloadersEach stage is circled, and lists the

specific tasks performed by the stage.
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Load Load Load
stagel disklabel stage2
Stage 1

Discover Protected

Enable Set up Setup
system console segmentation &.long agin
memo g mode Paging

Stage 2

Additional Load
paging hypervisor

Disk Filesystem ELF
Driver Driver loader

Figure 3: Bootstrapping the hypervisor.

The Bear bootstraping process hagmergedthrough two iterations to
support the goal of diskless readly bootstrapping The first iterationused a
simple Fat file systemaccessing physical hard disk on theachine,addressed
using the IDEstandard The second iteration uses the PXE boot standard to
transfer a readnly imageto a RAM-disk on the machinahe Fat file system is
then used to accesbe RAM-disk containing the systeraxecutablesThe file
system does not provide a write ogema and can only read data from reaay
protected memory pagefo minimalize codehangesthe imagse transferredn

the bootstraprocessare identicako those used ithe original design Theyare
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deposited at the PxBoot server after compilatioproviding a natural hooKor

encryption of the binaries.

3.2.1 TheMBRBootloader

The "IBM compatible” label associated with personal computers dating
back to the 1980s includeshmot loaderstandardstill used by most modern
operating systemdJpon sysem start, the first 512 bytes of a bootable hard disk,
called the Master Boot Record (MBR), is loadd#ghysical address 0x7c00. The
MBR contains the code for thaitial section of a bootloadeifhe MBR also
contains gartition table, which defines thayout of the rest of the physical disk,

anda twobyte signature. The structuoéthe MBR is shown inigure 4

0 446 510 512
Bootloader Code Partition Table ii

Partition Table Entry (four per table)

Size | Description

1 byte | Bootableflag (0x80 = bootable, 0 = non)

1 byte | Starting headt

6 bits | Starting sectort

10 bits | Starting cylindert

1 byte | SystemIDt

1 byte | Endingheadt

6 bits | Endingsectort
10 bits | Ending cylindert

16 bytes —

4 bytes | LBA of partitionstart

4 bytes | Partition size in sectors

—

Figure 4: lllustration of the IBM -compatible MBR and partition table.
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The elements marked in the partition table correspond $oCylinder
HeadSectormethod of addressing data on disk thatravdongerused.Modern
systems including Bear,jnstead usé.ogical Block Addressing (LBA)n which
512-byte sectorsare laid out lineayl on disk. For example, the @b5sector
would correspond to ¢hdata on disk ranging from bytes 655(512) to 656(312)

Once the MBR is read into memory, the processor theimdexecution
at address 0x7c00, the locationtiod MBR bootloadercode At this point, there is
no form of memory protection and the proaeds inreal mode

The MBR bootloader is of necessity,simple due to spaceconstraints
since it must share the MBR with the partititable, the maximum size $ code
is only 446 byteslt first examines the partition tabte discoverthe location 6
the first partition and thenreads the first 512 byteis containing thestagel
bootloaderi from that partitioninto memory.Unfortunately before thestagel
bootloadercan be executedpmeadditionaldatamustalsoberead from the disk
a secondartructure called alisklabel (this is the standard disklal used by
DragonFly BSD [6]) storedimmediately following the stagé bootloaderThe
disklabel is usedto discover where theystemimagesbegin, as wellas the
location and size of the finalegje ofthebootloadercodei the stage2 bootloader

Onceall of thisdatais read from disk, the stagk bootloader begins execution.

3.2.2 The Stagé Bootloader

The stagel bootloaderexamines the system RAM tmiild a map ofthe
available memory, setgp segmentation and pagjrentersiong modeto enforce

memory protectionandthenpasses control to tretage2 bootloaderTo build the
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memory map, a BIOS call is invoked thadturns a listing of available and

reserved memory regionBiagnostic infornation can be displayed at this point

via aconsolethat isenabled Segmentation structures for the GDT and segment

registers arereated A readonly code segment is created bwth privilege levels

0 and 3thatstretches from O to the end of memory. Treadwrite data segments

are created in the same manner, and the segment selectors are initialized with

these values-inally, following the enabling of segmentation, protected and long

mode are enabled: the low bit of CRO is set, PAE mode for pagimgldesl, and

bits 8 and 11 of the EFER MSR @{32e mode, allow NX bit) are enabled.
Althoughthe boot loadehas setthe necessary bits fenteringlong mode,

it mustalsoenable pagingpefore long mode can be activated. To this thedfirst

two megabyteof physical memory are identiyapped to virtual memoyyso

that the physical and virtual addresses are equivaknally, long mode is

enabled by setting the paging bit of CRO, reloading the GDT with a new

segmentation tablehjs table uses theamedata, butwith expanded sizes for the

larger address space), and enabling thbibdode segment.he system isiow in

long mode, and the most basic requiremeritenodern operatig systems have

been satisfied; Howeverthe bootloader has more work to dmefore the

hypervisorcan bestarted Initially, the stage 1 bootloadenables the floating

point unit and vectorization unit€ontrol is then passed to the st&jeootloader.

3.2.3The Stage Bootloader

The stage2 bootloader is a much largprocesshat does not suffer from

the 512byte size limitation due to presence of paging. Unlike the MBR and-stage
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1 bootloader, it is written entirely in C ammerforms tasks that require more
complexityin code which would result in a codeagments largethan 512 bytes

For examplesincethe system has entered long mode, convenient calls to the
BIOS for basic tasks such as reading data from the disk and printing diagnostic
messagesan no longer besed Thus, basic drivers for disk access and printing
to the VGA memorymust bancludedwithin this stage.

The stage? bootloaderinitially augments the alreaghpaged memory:
increasingthe identity-mappedpaged memory from the first two megabytes of
system memoryp to the first 12 megabytes, so that the hymawis guaranteed
to fit when loaded. It then utilizes a baidE disk driver to read the hypervisor's
ELF binary from the filesystemdefinedby the disklabel. Finally, the hypervisor's
ELF structure is analyzed and checked by a minimal ELF loader. |Géudker
performs no protection, relocation, or other complex tasksciated wittmormal
user program loaders. Instead, it merely verifies the file for validity and loads the
listed pogram headers.@e loaded, contrgdasseso the entry point listed ithe
hypervisor binary. At this point, the boot process has completed.

Originally, the stag® bootloader also set up and handled a table of
system interrupts. This functionality was eventually deemed unnecessary, and

removed.

3.2.4 PXE Boot

The ootstrapmg system described Wyigure 3 is built upon anetwork
boot protocol, called PXboot, which runs before the MBRboot loader.The

protocoldownloadghe image o program named MEMDISKrom a networked
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server[61]. This program transfers over the netlwarhard disk image containing

the Bear operating system, which mirrors the structure and filesystem of the
original physical hard diskThe MEMDISK programthen copies the first 512
bytes of this disk image to physical address 0x7c00, just as the BIOS dmu

with the original physical hard disk. Then, the system begins executing the code
or data as itoriginally did with the physical hard disk. The pddEMDISK
environment is indistinguishable to the environment seen by the bootloader
without using netwik boot. However, any BIOS calls to disk reads are instead

redirected by MEMDISK to the hard disk image in memory.

3.3 Goal 2: Kernel Refresh,Denying Rersistence

This sectiordescribs the hardware control and structures associated with
virtualization onthe Intel x8664 platformand how these are used by the Bear
hypervisor to operate virtual machiresd perform kernel refreshhis feaure set
is commonly called Vk and the features are named in the Intahual as VMX
Unlike many x86 feature§/t-x is not shared beteen Intel and AMD processors
i AMD has its own hardware feature set for watization, called SVM. Bear

initially targetsintel procesors, and thus uses Intel VMX

3.3.1 Enabling Virtualization

The vrtualization feature seis controllal by the VMXE bit of the CR4
control register.To activatevirtualization this bit must beet; however, there are
severalsubtleties that mustlso be observed. Thebatract code in Program 1

describes the complete process.

29



/[ Check if VMXis available on this processor.

CPUID
Bit 5in ECX set?
No - > Fail
/I The BIOS can disable VMX. Test this, and enable VMX
/l'if it is not locked out.

Read MSR 0x3a
Bit O set, bit 2 cleared?
Yes - > Falil
Bit O set, bit 2 set?
Proceed
Bit O cleared, bit 2 cleared?
Set bits 0 and 2
/I The VMXE bit must be enabled.
Set VMXE in CR4
// CRO and CR4 must have sp ecific bits set or cleared.
/I Test thatthe values are what are needed for VMX.
tmp < - Read MSR 0x486
tmp = (CRO AND tmp) XOR tmp
Is tmp 07
No - > Fail
tmp < - Read MSR 0x487
tmp = (CR4 AND tmp) XOR tmp

Is tmp 0?
No - > Fall
/I The processor uses a 4 096- byte, page - aligned region
/[ of memory for storing information.
Allocate 4096 - byte region of memory: VMX - Region
Zero VMX - Region
VMX Region[0:29] < - MSR 0x480

VMXONVMX- Region

Program 1: Enabling virtualization .

On conclusion ofthis process, the processor is capable of utilizing
virtualization. This includes launching, swapping, and resuming virtual machines.
In this process, the hypervisor is called thast and thevirtual machines it
controls are called thguests Launching or resuming a guest is calléd\i entry,

and control being passed back to the hypervisor is caléd exit

3.3.2 The HypervisoMain Loop
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Once virtualization is enabledrtugh the process section 3.3lL, the
hypervisor is ready to launch and control the Beacrokernel. Program 2
describeghe basic operation of the hypervistirconsists of a simple loop that
repeatedly creates a virtual machine, bootstraps the microkernal vatual
machine from the readnly file store, waits for a preemption time, and non

deterministically discards the kernel.

/I Initialize VMCS Region

START

Allocate 4096 - byte region of memory: VMCS

Zero VMCS

VMCLEARVMCS

VMPTRLDVMCS

/I Controlling parameters f or the kernel are then set.
/I These include a preemption tim er, control register
/I state, instruction pointer, and other values.

VMWRITE some- parameter
VMWRITE other - parameter

Load kernel from gold standard read - only source
Apply diversification
Save hypervisor register state
// Begin execution of virtual machine
VMLAUNCHYMCS
... virtual machine execution proceeds ...
... Preemption timer interrupt!
Save virtual machine register state
Restore hypervisor register state
Time for refresh?

->Throw ke rnel away, goto START
Save hypervisor register state
Restore virtual machine register state
VMRESUMBE/MCS

Program 2: The hypervisor main loop.

A hypervisor controls its guests through a block of memory called the
Virtual Machine Control Structure (VMCSThis is a foutkilobyte, pagealigned
block of memory, one per logical virtual machine that the hypervisor executes.

The VMCS contains all of the parameters associated with the guest that are
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manipulated in Program 2, including how the virtual machine tr@gtomatically

be interrupted so as to pass control passed back to the hypervisor. There are a
large number of parameters that can be stored in this structure, not all of which
are used by the Bear system. The parameters used by the Bear system are listed
and described in Appendix B; a complete listing cafobead in [27.

In addition to the steps described in Program 2, there are several other
necessary steps associated with bootstrapping a virtual machine. These include
determining default and supportedlues for various VMCS fields; however,
these are generally part of the initialization steps and not actively performed
during the loading and managing of virtual machines and have nu tearing
on the project goals.

Recall that Program 2 refreshegshe kernel from the RAM-disk
corresponding to thgold-standard, readnly sourceto deny persistencelhe
readonly status of the disk is enforced by the hypervisor but could also be
realized through a hardware badkannelto allow updatesThis refreshfrom-
standard procesmnsures thaf a rootkit wereto persist in th&ernets memory it
will be flushed out of the systerBy utilizing the readonly source rootkitslose
that avenue for persistence

Although not yet described, it is valuable to untherd the hook provided
by Program 2 for applyinghe diversity ideas (Goal 6}ha will emerge in later
chaptersDuring thebootstrapping of a new kernel, the hypervisor useglan

loaderthat incorporates the ideas presented in Chapters 4 and 5.

3.3.3 Kernel Environment
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The hypervisor initializegach kerneln an environmenthat acts agf a
bootloaderhad initialized it. This environmenmi mi ¢ s , i n the kernel 6
space, all thenormal attributes expecteloy a bootloader. System memory is
placed n the same map; segmentation registers and paging are set up in the same
manner(though diversity is added); long mode is enabled. Control registers are
made to mimic those on the system. Plaeameter valuessed by the hypervisor
are ead and are set #®se of the guesthe only change being that virtuadizon
is disabled for the guesControl register modification outside of these valises
renderedmpossible (see section 324.

The address space giveneachguest mimis that given to the hypeisor
by the bootloadera 256-megabyte chunk of memory is allocated for each guest.
This memory is redirected it $bat theguestoperates ophysicaladdresses from
zero to 256 MB (see section 3l4for more details on this process). A BIOS
memory maps placed at the normal bootloader location, marking the BIOS areas
as unavailable and the rest of the space as available for system use. Unlike the
hypervisorbootloader however, the hypervisamploysa sophisticated and full
featured ELF loadeiThis endles thenypervisorto applydiversityt o t he ker nel 0s
ELF binary, boththe kernel code and data scattered throughout its address space.
For more information on this process and the details of the scattering, see chapters
4 and 5.

Somespaces external tthe guests256-megabyte chunk are redirected
into the kernel memory space. The VGA memory used by the console is placed in

its normal physical location. Any memory for the network card and, theoretically
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in the future, other hardware peripherals, is likwedirected and available for
use directly by the kernel. The hypervisor does not attempt to multiplex access to
hardware contested by its guests: insteadperats under the assumption that
only one kernel willbe active andhave access to hardwaak any given time
Recall that thdnypervisor exist®nly to nondeterministicallythrow away kernels

and refreslthemfrom a gold standardemoving persistence in the kern@lith

no contention for hardware, the hypervisornist required to mediate acees

keepng its code base minimal

3.4 Goal 3: MULTICS -style Protections Applied to Kernels

Recall that design Goal 3 involveapplying classic MULTICSstyle
read/write/execute protection® kernel memory. Thee protections prevent
accidental and malicics memory corruptioby writing into executable code

Running guests in paged protected mode while preserving the illusion that
they have complete control over the systhas classically been a thorny issue. A
guest kernel running unmodified would cleamlsed to exert some form of cooit
over the system page tablasorder to allocate its own memory and separate user
processes from each other. Giving the guest total control, however, would defeat
the point of the hypervisor providing protections andaiiog guests: the guest

could examine and modify any memory on the system, includingiseak by the

2 Eventually, some form of validity checking with how a kernel interacts with the hardware may
be implemented. If this is done, the hypervisor will need to mediate a@ctrgsn this case, for

protection, not naltiplexing.
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hypervisor to control the guest. The hypervisor wahkeh be unable to protect
kernels in the sae fashion as kernels proterder processes.

Past solubns have centered oshadow page tablesvhere the guest
kernel is unable taactually access the page tabl@he hypervisor keeps a
mapping of virtual memory as seen by the guest and its correct translation to
physical memory. Any attempt to modify CRB8 the page tables would cause a
VM exit, and the hypervisor would then handle the modification instead after
checking that it was acceptable. Any page fault would similarly be forwarded to
the hypervisor, which would need to service the interrlipts processis slow
and puts the burdefor checking whether a modificatiols benign (a process
switch) or malicious (making hypervisor memory accessible to the kerntel) on
the hypervisorlt also significantlyincreases the complexity of the hypervisor,
which then needs toncorporate knowledge of how tdeal with the memory
managemergystems of each guest kernel that might need to run.

To deal with these issues, Intel releasedBkinded Page Tabkystem.

This is a form of nesting where the guest has cetaptontrol over the classic
page table structure. The hypervisor provides an extra layer of address translation,
after e normal page tables, which mpletely transparent to the guest
operating system. This allows a hypervisor to manage physical memibout

the overhead of shadow page tables while also giving the guest the illusion of
total physical memory access. A diagram of the resulting translation system can

be seen irfFigure>5.
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Figure 5: lllustration of Extended Page Tables.

Addresses are anslated fromguest virtualto guest physicalising the
normal page table structure of the kernel. Afterward, a second page table structure
takes ovemvhich translates the guest physical address to its true physical address
This structure is rooted by tlextended Page Table Point@PTP). The EPTP is
defined in the VMCS, and is the EPT version of CR3. Much like the rest of the
system, an EPT page can be configured to be either four kilobytes or two
megabytes large, with the length of translation and patgle structures changing
accordingly. The Bear system uses a four kilobyte page size for both the normal
page tables and the EPT.

Similar to how the kernel allocates memory for user processes, the
hypervisor can decide which system memory it exposesrning guests. This
choice generally excludes the memory of itself and other virtual machines on the

system, thus offering isolation and protection. A kernel cannot view other

memory on the system without modi fying

it cannot do without somehow breaking into the hypervisor.
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While EPT has vastly simplified hypervisor logic, it comes with another
benefiti built-in MULTICS protections. EPT, just like the normal page tables,
allows the hypervisor to control which among reatie/execute permissions are
allowed for a given memory page. With the desired read/write/execute
permissions for memory segments set in the ELF binary for the kernel, these
MULTICS-style protections can be applied to the kernel, just as the kernedsappli
them to its own running processes.
The Bear hypervisor configures EPT to provide these controls on kernel
code and dat a, |l earning from the Kkernel 0s
protected to what degrek there were no hypervisor, an exploit witarketlevel
access could modify the page tables to perform these operations at will. With the
addition of thehypervisor, however, any attempt to patch reaty kernel
memory or execute code located in a data region will result in a VM exit, at which
point the hypervisor can take appropriate action. Hypervisor memory is
inaccessible from the guest; using EPT, it does not even need to be mapped into
the guestdos address space. The abstract co

asshown in Program 3.
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// Begin execution of virtual machine
VM.AUNCHVMCS

... virtual machine execution proceeds ...

... EPT violation interrupt!

Save virtual machine register state

Restore hypervisor register state

/I Take appropriate action. One possibility:

Log violation

Put kernel in background; accepts no new co nnections.
/I Start a new kernel to handle new clients.

Goto START

/I Restore the bad kernel on an unused processor.
Restore virtual machine register state
VMRESUMB/MCS

The mechanism whebbg a hypervisormight spin down a kernel with
outstanding connections until their completion, while spinning u@wa gold-

standard kernel for neaonnections, is explored iB§].

3.5Goal 4: Processor State Protection

The intent of potecting the processor stats to prevent successful
exploits from performing modifications that would assist with stealth and
persistenceBy virtue of adding another layer of hardware controls to the system,
hypervisors can provide protections to kerndlat twere previouslympossible
The ability to provide MULTICSstyle protectionshasalready been discussed,
but there arealso additional mechanisms available to protect firecessa
critical data structuresAs these structures are often used by rdastkp aid in
stealth, protections on them can mitigate fundamental at@agasmstmemory
protection. Br example,considert h e 7 CR O ] tisediochkpasssysténd
memory protectionsThe x86 architecture contains a flag in CRO which, if cleared,
allows kernellevel code to write to any region of memoeyen writeprotected

memory Since kernelevel code can modify CRO, any malicious code that wishes
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to write to reaebnly memory need only clear the WP bit, perform the desired
writes, and reset the bibnce more, entirely bypassing any form of write
protection that has been set in the segment registers or page tables.

With hypervisor protection®n the control registers, this attack can be
eliminated. Using specific fields in the VMCS (see Appendix Bnfore details
on these fields: thguest/host maskandread shadow, the hypervisor can set
this bit to a static value thatkernel cannot change. Then, a malicious attempt to
clear the bit will cause aVMexit, preventing undesired writes to reauly
memory?.

Unfortunately, thes@rotections are not genetalirposein nature; many
operating systemsncluding the Bear bootloadeutilize write protection bypass
feature in their own code. Thus, to properly utilize these protections, the kernel
must be dsigned with the inability to bypass the restrictions in mknen if the
hypervisor enforcethe conditionthat code talisablethe protections was only to
be run within a specific function, malicious code could always return to that
function in a returrto-libc style attack, and then proceed. To ensure complete
write protection within kernels, the ability to bypass it at all must be remé&waed.

the Bear system, any possibility of disabling these write protectiassbeen

31t ds worth remembering that there are other ways
not just the CRO trick. For example, the page table entries could be modified, by setting the

writable bits in the individual entry or creatiagvhole new page structure. Both of these can also

be controlled by the hypervisor though: either through use of EPT in the former or both EPT and

the CR3 controls in the latter.
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removedi with the ability comptt el vy out of the kernel

to-libc style attack is taken off the table.

3.6 Attack Surface Minimization

The Bear system has been designed to minimize the attack shyface

extensively sharing code between the hypervisor and micrdké&taeall thata

survey of open source code discovered approximately 0.16 errors per thousand

lines of codan open source softwar&?], making the reduction of the attack size

a laudable goal for reducing vulnerabiliti@@ble 1 shows the currermumberof

unique lines of code in each componefithe Bear systepas well as shared lines

of code.

Table 1: Code size

Component | Lines of Code

Hypervisor 1,788
Kernel 2,335
Shared 5,062

The shared code inclusi¢he following

T
il

Basic data structures (questhash table, etc.).

Interrupts handling

C-callable wrappers around basic assembler instructions.
Virtual memory subsystem, including allocation and freeing.
Disk access (including RAM disk) and filesystem.

System timer.

TheELF loader.

Process scheduléschedules both user processes and virtual machines).
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3.7 Supporting Legacy Operating Systems

A future research project involves the running of different operating
systems on the Bear hypervisor. This work is still in its vestigial stages and is
experimerdl, as the Bear hypervisor was originally designed solely to run the
Bear kernel. The first operating system that has been run on Bear is NetBSD
version 6.0.1.

Unlike running the Bear kernel, for NetBSD the hypervisor does
perform any of the boot load operations that the kernel expects to have been
performed. Segmentation and long mode are not enabled; instead, the guest is
started in real mode as if the system had just been bodtedigh a memory map
is provided as if performed by BIOS call. Thgstem BIOS memory is copied
into the address space of the guest, so the guestingayly perform any BIOS
calls that it might needithout hypervisor interferencetherwise, the hypervisor
would need to emulate a largaumber of complex BIOS routines.
Multiprocessing isnot supported: while the ACPI region of the BIOS memory
reports that multiple processing cores are available, NetBSD has been compiled
and passed flags to disable this behavior and instead run on a single core, without
using ACPI at all.The current status of the project is that NetBSD sucaigsf
boots, but does not start a shaille to lack of a root filsystem-- Bearno longer
supportsa physical diskTo mitigate this involvegorting NFS and pointing it to
an NFS share across thetwork to act as its root filesystem.

This work has only been possible due to the open nature of NetBSD; a

similar attempt to virtualize Microsoft Windows would likely prove to be much
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more complex due to the inability to examine the Windows source cbhda w
problemsarisewith virtualization.
3.8 Summary

In summary, this chapter has described a minimalist hypervisor that
continually refreshes kernels to deny persistence. The hypervisor shares code
extersively with the microkernelapplies MULTICsstyle read/write/execute
protections to kernels and additional protections on the processor state. Write
protection is enabled throughe hardwaréNX-bit in X86-64 page table entries.
The protections are leveraged to support a diskless,only bootstrapping
process. The hypervisor main logpovides the necessary hooks for adding

diversity every time aewkernel is refreshed.
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Chapter 4: Diversity through Compile-Time Techniques

Diversification is the primary mechanism for preventing unexpected code
execution and similar exploits in the Bear system. The diversifying
transformations nondeterministically scramble the locations of code and data on
the system, making exploits that rely @ms knowledge fail. The process of
introducing nondeterministic modificatiento binaries also serves to create
differences between running versions of code on networked systems and thus
throttle thevulnerability amplificationaspect of networks such as theernet.
With each system running something different, attackers mafitreaw exploits
to target specific systems, rather than a single exploit for every system.

The Bear diversifying transformatiosgek to achieve four key properties
in the resulting binary codes

1. Shifting all code out of position to disrupt tleatry poirs for all code
segments, including unanticipated anes

2. Placing all code in an unpredictable location to prevent an attack from
resumingto normal execution by jumping or returning to a known location.

3. Changing jump offsets within all code paths, suchf/atse switch and
for-loop blocks, to remove similarities between all variants of a binary.

4. Shifting of all data out of position to disrupt direct manipulation.

Properties#l and #2 prevent code executibiat hijack pre-existing code
on a system, such saReturnOriented Programming [14 Property#2 denies
persistencen the system, disallowing an attacker from achieving a hidden point

of-presencewithin a running systemProperty #3 enhancesliversity beyond
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ASLR [32], extending the entropy ttogical blocks within the program rather

than simply individual functions or ELF segmenBroperty #4 removes the

ability to designate control or plant code in4gpasting data structures.
Compiletime diversification is performed through two operations: the

padding transformatiorand theordering transformation

4.1 Implementation

The compiletime diversity techniques are introduced as part of the
compiler toolchain. The padding transformation is implemented as a Clang
compiler plugin[62], and the ordering trsformation is implemented as a patch
to GNU Gold, a linker that is part of the standard GNU Binutils pack2@jeon
Linux systems. To add diversity to a binary, the compilation process must be
slightly modified in two stages:

1. Before normal compilation wh the C compiler (such as gcc), the source
files must be diversified vighe clang plugin. This represents as a pre
compilation pass, and applies the padding transformation.

2. The linker requires an additional flag passed as part of the linking process:
ft-randomizetexto . Thi s tell s t he l i nke
transformation to the final output.

The resulting binary is identical in function to a binary compiled without

diversity, but has been nondeterministically modified to satisfy goals 1, 2, and 3.

4.1.1 The Padding Transformation
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Recall thatthe diversity transformations araotivated by three corgoals
disruption of entry points disruption of return points foresuming normal
executionand modification of aljump offsetsvithin code pathsTo achieveeach
of theseideas s bits of entropyare injectednto everyblockin a program. This is
achieved by inserting a random number of bytes, between 0%&nd,2at the
beginning of each block, using a uniform random distribution. The insertesl byte
themselves are random numbers. Jump instructions are inserted before the random
byte stream to ensure they are not executed by normal operation; this minimizes
the performance effect of the transformation. The insertiommisiemented
through sourcéo-source transformation on the original C source cadimg a
Clang compiler plugn. The plugin operates as shown in Program 4

For each source file:

For each function:
n<- random(0,2 s i 1)
insert _asm_string(idajmp 1f0)
for i from O to n:
b < - ran dom(0, 255)

i nsert _asm_s
i nsert _asm_stri

Program 4: The padding transformation.

Figure 6 shows the padding transformation in action. The-refst
function is the original source code; the two rigiast functions demonstrateo
possible results from the sourttesource transformation: the first using a two
byte, followed by a foubyte random sequence; the second using abgtee
followed by a twebyte sequencd hi s represents a fArandomo

code inserted intevery block.
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void fn() { void fn() { void fn() {
if(var) { jmp 1f jmp 1f
é 0x63 Ox4F OxA!
} 1 1
é . if(var) { if(var) {
} jmp 1f: jmp 1f:
0x27 0x15 0x02 0x24
OxCA 0OxD5 1
1 é
é }
} é .
é. }
}

Figure 6: Function with two vacuouspadded variants.

In consequence of this transformation, if an attacker attempts to use pre
existing code present in the binary, based on static analysis, the execution will
incorrectly jump to a random ipr location, typically causing a crash. On some
rare occasions where a crash is not triggered, an unexpectatkteoministic

action will be performed.

4.1.2 TheOrdering Transformation

Generally, linking is a deterministic process. Even if a binary is
recompiled, the location of functions in memory remains the same. This can be
modified to some degree by changing the order in which the object files are
supplied to the linker, but this is also typically an automatic and deterministic
process. There is lie reason, performanegise, for this determinisprand every
reason to modify it for the sake of diversifyhe ordering transformation outputs
functions within the text segment in a random order. It has been implemented

through a modification to the Goldlinker (part of GNU Binutils). The
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transformation only operates on input sections of the object files markedtas
(ie. correponding to code).

This transformation can be applied at the fgnain of individual functions,
as shown in Figur@, providedthe object files are compiled with one function per
ELF section (i.e. using thdfunctionsectionsflag on gcecompatible compilers).
Alternatively, it can be applied at coaigmin on complete object files, where the
location of the entire object filesirandomized. A simpleWl,--randomizetext
flag on the compiler command line for a gmmmpatible compiler will inform the
linker to apply the ordering transformatiorhis ordering transformation ensures
that even if an attackéearnsthe base addresg$ the text segment, they will not
be able to exploit memory vulnerabilities discovered through static analysis of the
binary. The implementation is extremely simple: before the linker writes the text
sections to the output binary as normal, the array sontathese sections is

randomly shuffled. The result of applying this transformation is demonstrated in

Figure?.
plt plt
int main() { ...} _start _start
voidfn1(){..}| ~| man| ~ [fnl
voidn20{..3| “{m1 | 7 |m3
void fn3() { ...} fn2 main
fn3 fn2

Figure 7: Function layout after compiling and linking.

4.2 Quantifying Diversity
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Each transformation injects a certaamount of nondeterrmism. To
measure this amourifis researcluses Shannon entropyShannon entropy is a
familiar concept: specifically, it measures the information content of a random
variable. Our diversifying transformations effectively inject measurable entropy
into running processes and their binary images. The amount of injected entropy
informs us to both the effective number of unique variants created by our
transformations, and the difficulty of using brute force to discover a specific
address of a piece of code data. The random variable, in this case, is the

memory address of an arbitrary code fragment.

4.2.1 Entropy of the Padding Transformation

Since the linkerby defaultlays functions directly bacto-back in the
program binary, the amount of entroggined ly the padding transformatios
not solely derived from the number aandombits s injectedin each function
Instead, thdocational differenceahat any givercode fragmentould takeis also
based on the number of blodik$n which bytes are placed earl in the file. Tke
probability of a locational difference of a given magnitudeequivalent tahe
probability of therolling that magnitude o s-sided dice. For large values lof
the probabilityp can be approximated using a normal distribution withance

p=b(s?- 1) [/ 12
Thus based on the definition of entropy on a normal distribution, the total

number of bits bentropy can be approximated by:

I g (&pk/2L
This valueonly represents the entropy available to ¥ieeylast instruction

in the binary; asoneproceed toward the top of the binary, the number of blocks
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decreases as does the entropy (as the distribution becomes less Rormal
resembling with fewer dice rolled)However, when including the ordering
transformation, the terminating ngction ineveryfunction can potentially be the
last in the binary file, and thus the calculated value becomes substantially more
meaningful: now the entropy @fachblockis quantified, rather than the only the
final block

To approximate padding entrppor discrete binariesreplace the terrb
with the average number of blocks per functiboing this, Table2 presents this
level of entropy as a function of s and the corresponding number of unique
variants generated for three code exempthesBear fpervisor, the Bear kernel
and the open source web serWigihttpd [63]. The hypervisor contains 3460
blocks (an average of 9.25 blocks per function), and the kernel 3833 (an average
of 12.44 blocks per functiorgt the time of measuremerighttpd contans 1629
blocks (an average of 4.59 blocks per function). Using these values, dable
presents the level of entropy as a function of s and the corresponding number of
unigue variants generated. The first number in the table entries represents the
entropy br the whole program, and the second number in [brackets] represents
the entropy of an individual function in the program. The units of entropy are bits,

and the units of variants are merely the total number possible
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Table 2: Padding entropy

Maximum Bytes Inserted
Exemplar
8 16 64 256
Hypervisor 9.12 10.13 12.13 14.13
Entropy [3.36] [4.06] [5.45] [6.83]
Hypervisor 17,965
Variants 557 [10] 1,121 [17] 4,491 [43] [114]
Kernel Entro 9.20 10.20 12.21 14.21
Py [3.51] [4.20] [5.60] [6.98]
Kemel Variants | 586[11] | 1,180[18] | 4,727 [48] [1182'2]08
. 8.58 11.59 13.59
Lighttpd Entropy [3.01] 9.59 [3.71] [5.09] [6.48]
Lighttpd Variants 382 (8] 769 [13] 3,081 [34] 12,327 [89]

Clearly, as seen in data, standinigna the padding transformation is not a
particularly impressive source of diversity: even with up to 256 bytes of padding
inserted only 19,000 variants can be obtaihadhall in comparison to the size of
modern cloud computing environments. However, tejgesents a base level of
diversity that can be further enhanced in combination with other transformations.

As will beshown thiscombinationradically increases entropy

4.2.2 Entropyof the Ordering Transformation

The level of entropy generatedy the ordering transformationis
deceptively complex to calculate. Without loss of generality, consider any
arbitrary functionF. There is a uniform probability of placing this function in any
location among the other functions. However, functions can hawretitf sizes.
Imagine the case where every function has a size equal to a unique power of two,
such that one function has size 1, one has size 2, one has size 4, etc. In this

specific case, every possible reordering of functions produces a unique
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transforméion of functionF. Thus, if there ara functions, there are"inique
transformations anch bits of entropy. This provides an upper bouonl the
amount of entropy possibléut is not particularly instructive as it extremely
unlikely that all functios would be uniquely and appropriately sized.

An alternative is to establish a practical lower bound. Assnsteadthat
all functions are ofdentical siz¢". With all functions the same size, functién
can now be placed ianly one ofn unique locationsTherefore, the number of
bits of entropy from this technique is equivalent tanjgivheren equals the
number of functions in the binary. Consequently, ldveer bound on theaumber
of variants isequivalentto thetotal number of fundgbns. Forthe exemplars, the
hypervisor has 374 functions, the kerB88 and the.ighttpdprogram355 Thus,
the transformation introduces at least 8.55, 8.27 and 8.47 bits of entropy,
respectively. Again, this is not a particularly impressive level asfdymness

when taken in isolation.

4.2.3 Joint Entropyof the Transformations

These two transformations do not produce independent probability
distributions; therefore, their entropies are not additive. This is straightforward to

illustrate: imagine the siple case where there are two instructionandl,, each

41f the size of one of these functions is varied, it could only increasentimber of potential

transformations. This is because the differesthed function could appear either above the
chosen functiort instead of a noizevaried function, which results in an additional case. With
all functions the same size, you only dde consider the total number of functions placed above

F, not which specific functions are placed above it.
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of which is one byte long. These instructions can be relocated, and each
instruction can be padded with up to one byte. In this case, all possible

combinations of the transformations yield TaBle

Table 3: All combinations of two instructions with two transformations.

Position

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

1

1

Pad

Pad

l1

2

Pad

Pad

2

l2

l1

1

Pad

1

2

l2

Pad

I2

Pad

I2

Iy

Pad

Iy

2
3
4

l2

1

Without loss ofgenerality, examine instruction.
position 2/8' of the time; the second position B/8he third position 2/8; and the
fourth position 1/8. This distribution fol1 hasan overall entropy of 1.9056 bits;

this is less tharhte sum of the entropy of the two individual components: Ig(2) +

D(2,2) =1+ 1.5 = 2.5 bits.

To find an analytical expression for the combined entropy introduced by
the transformations, it is necessary to derive a distribution for the position within

the bnary that any arbitrary instruction can take. Again, without loss of generality,

It appears in the first

choose the instruction at the end of the binary. Its distribution is:

For n unique layouts generated by the ordering transformationy is

the distribution of the same instruction for that specific layout. For any individual

l ayout,

the padding transformation. Litbe the size of the fixed functidf z be the total
number of blocks contained in this function and all functions above it in this

layout, ands be the maximum number of inserted bytes. With tipasameters:

t

he

i nstruct i on &sas thaughtomlyiubingt i o n
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Using the definition of entropy with these parameters results in the

following definition:

o °
€

Mo 1C qo Qo

Unfortunately, as mentioned in the sectionreardering functions, there
is a problem in that the maximum number of transformationis,exponential in
the input parameters. In theory, its size is bounded by the size of the power set of
the available functions. Thus, to develop a practical estimftie available
entropy, two simplifying assumptiorse made

1 Every function is the same length.
1 Every function has the same number of blocks.

Recall that the first assumption was employed to gain a lower bound for
the entropy associated with the ordgrtransformation; the second is similar and
associated with the padding transformation. When taken in combination, they
reduce the calculation of entropy to a problem with linear complexity. In addition,
rather than integrating fromHbto Hb, the lower limt is set to 0: for a small
number of blocks, and therefore a small number of dice, the normal distribution is
a poor approximation. Since the binary begins at location 0 and only positive
address values are possible, no actual source of entropy is renibvied
represents a more accurate representation of total entropy for transformations

when used in combination.
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To provide apractical estimate of the expected entropy and number of
variants,a function length i€hos@ equal tahe average for the binargimilarly,
the ratio of blocks to functions is chostenbe the averag®er the binary Table4

shows the resulting levels of entropy and number of variants as a function of

Table 4: Entropy estimation of combined transformations.

Maximum Bytes Inserted

Exemplar

8 16 64 256
Hypervisor 17.10 17.50 18.47 20.00
Entropy
Hypervisor 140,480 | 185,360 | 363,100 | 1,048,576
Variants
Kernel Entropy 16.24 16.60 17.57 19.11
Kernel Variants 77,307 99,273 194,860 | 565,690
Lighttpd Entropy 16.32 17.03 17.60 18.46
Lighttpd Variants 81,898 133,480 | 198,860 | 359,840

Note that the combined entropy is radically increased even though the
component transformations presented little apparent entropy individually. It is
also interesting to note that tikrnel entropy is lesghan theLighttpd entropy
for s=8, 16, and 64; however, it is higher for s=256. This is becaud¢ethel
has a substantially higher number of blocks per function thighttpd this
number begins to dominate the expression as the insertion size increases

Although these results provide a practical assessment, it is also instructive
to consider the minimal case where the function size is set to 1, with 1 block per
function. This represents an extreme degenerate case, that is unlikely to occur in
practice lit provides insight to the minimal level of entropy that can be expected

in practice. Tabl®& shows the corresponding values as a functian of
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Table 5: Minimal entropy estimation for combined transformations.

Maximum Bytes Inserted

Exemplar
8 16 64 256

Hypervisor Entropy | 10.75 | 11.67 | 13.61 15.59

Hypervisor Variants | 1,722 | 3,259 | 12,503 | 49,324

Kernel Entropy 10.47 | 11.40 | 13.33 15.31

Kernel Variants 1,418 | 2,702 | 10,297 | 40,623

Lighttpd Entropy 10.68 | 11.60 | 13.53 | 1551

Lighttpd Variants 1,635 | 3,904 | 11,847 | 46,850

4.3 Performance Impact

Injecting random bytes into the start of every function is not without
consequences, both in Hime performance and code size. To measure the
impact on the formetthis researchutilizes the SPEC CPU2006 benchmark suite
[64]. The benchmarks were executed on an Intel Core 2 DA600 system
running Linux 3.3.1. Initially, two baselines were generated: with and without the
-fno-align-functions and -fno-align-jumps compiler flags required to obtain the
full level of entropy inthe injected code. Subsequently, the benchmarks were
transformed using the padding transformation, compiled, and executed using the
SPEC benchmarking harness. The benchmarks were executed aPMite
minimize the effect of the Linux scheduler. To emsuhe worst possible
performance characteristics of the transformation, the maximum amount of

vacuous code padding was generated at every insertion point. This intentionally

degrades the performance of the processor ¢

Theresults of the SPEC benchmark are showfigare8.
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Figure 8: Benchmark results for vacuous code padding.

The worst benchmarks are 400.perlbench, 445.gobmk, and 458.sjeng
which yield performance penalties up to approximately 16%. This varied slightly
with the aforementioned compiler flags (up to 18%). The remainder of the
benchmark results indicates roughly 5% performance impHgis is low
compared to related work, such as Larsen et al.

The performance impact for the ordering transformation appeabg to
negligible. It was tested in isolation using the same process as used for the
padding transformation; no appreciable performance degradation could be
measured. In addition, the performance impact of the joint transformation was no
greater that then penfmance impact of the padding transformation alone. This
was expected, as the ordering transformation introduced no measurable
performance degradation.

For code size, the average increase is simple to calculate. The size of the
resulting binary will vary bBsed on the number of bits of entropyactually
injected in each block. The average size increase is equal to the average of the
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uniform distribution for code insertion, multiplied by the number of insertion
points. As mentioned, the number of inserti@ings is equivalent to the number
of blocks,b. Thus, the size average size increase for a given binary is ecplal to

2 bytes. For the exemplars, the average code size increase is shicaiaheit.

Table 6: Average code size increase (in kilobytemnd %).

Maximum Bytes Inserted
Exemplar
8 16 64 256
Hypervisor 13.8(.59%) 27.7(1.2%) 110.7(4.7%) 442.9(18.8%)
Kernel 15.3(.55%) 30.7(1.1%) 122.7(4.4%) 490.6(17.7%)
Lighttpd 6.5(.9%) 13.0(1.8%) 52.1(7.3%) 208.5(29.2%)

4.4 Adoption Challenges

The compiletime transformations require a modification to the compiler
and linker, and recompilation of programs from source. This is an obstacle to
distribution on popular closesburce systems such as Microsoft Windows, but is
feasible on systems such lasaux distributions, or in closed clouds where a store
of available binaries can be cras®unted and loaded at will.

The proliferation of stackuarding patches for the GCC compiler proves
that such distribution of transparent security measures is fgsibpen source
systems. Currently, only sourbased distributions could be protected in a
widespread fashion, but the transition to runtinased diversification will
eliminate that weakness. Obviously, the diversification has already been applied

andis running on the system it has be@signed for, namely the Bear system.

4.5. Summary
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This chapterhas described two core compilme transformations that
nondeterministicallyadd diversity to a program. In the worst case, whereoup
256 bytes are add to every block, the code size increase ranges from
approximately 18 to 3® while the runtime overhead ranges frérto 18%. For
an extremely small operating system code base (less than 10,000 lines of code), at
least 40,000 variants are available, watitentially more than one million variants
attainable. Obviously, as the code size increases, the potential for variability

increases commensurately.
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Chapter 5: Diversity through Runtime Techniques
While a considerableamount of entropy can be injecteding the

compiletime techniques, it is not sufficient. Recall that 16 bits of entropy were
experimentally determinedsaa minimum for protection [33The compiletime
techniques reach around 20 bits for the hypervisor, which is too close to the
minimum for comfort. Furthermore, the comptiiene techniques have the side
effect of a nortrivial performance penalty and file size increase. These shortfalls
of the compiletime techniques are addressable with the-time techniques
presented in this chapté@ihe goals of the runtimewrsity system are as follows:

1 Significantlyincreasehe level ofinjected entropy.

1 Eliminate code size increases and remove performance penalties.

1 Add entropy without requiring source file modifications.

1 Transparently diversifgny process running on the Bear system.

1 Work identically for diversifying kernels and user processes.

1 Diversify bothcode elements and data elements of a program.

The runtime diversity systedeveloped hersatisfies all of these goals.

5.1. ELF Preliminaries

Bear uses the Executable and Linkable Format (ELF) to store binary code
and data of programs in files. The full detailstlo format can be read [62].
This section discusses the basics of the format and a small number of features

specifically usedby the Bear system.

5.1.1 Binary Layout
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An ELF file begins with a header placed at the start of the file. It then
contains either @rogram headeror a section headeror both. If it contains a
program header then the file is an executable binary; thgrgn header defines
segmentsThese segments describe the file addresses and corresponding memory
addresses of data that should be loaded into memory at program execution time
and their read/write/execute permissions. In general, the program heades and it
defined segments describe how the loader should construct the binary image of
the process and begin execution. These segments do not merely define the code
within the binary: they can also describe the permissions that the stack, heap, and
other arbitray elements will utilize.

There is a parallel view of the contents of the ELF binary: that defined by
the section headerThe header definesections which contextually describes the
blocks stored within the binary. Sections put Higlel meaning to théow-level
data blocks. One major class of sections is PROGBITS (code and data used as
part of the running process image); these include the process code (section
named.tex) and preinitialized global data (section namedhatag). Sections also
include metdata and other notes and comments, two of whredescribe in
more detail below. Figur@ shows an example ELF binafom the view of the

section headewith several text sections and associated metadata sections.
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ELF Binary

text.main
text.fnl
text.fn2
text.fn3
e
rela.text.main
rela.text.fnl
rela.text.fn?2
rela.text.fn3
e
.symtab

Figure 9: ELF binary, section view.

The section data is not strictly required for the runtime loading process.
However, the data encodes figmined information that is utilized by the
diversification processThus, our loader requires this section information to be

present.

5.12 The Syrhol Table

A symbol table is stored in theymtabsection of an ELF binary. It is not
strictly required for execution, but it is required for the diversification component
of the Bear system. It contains a list of various identifiers in the binary code,
known assymbols Usually these are the names of functions and data variables
(these are what are primarily used for diversity in Bear), but it also contains such
data as filenames that were compiled into the final binary, the starting locations of

ELF secions, linker information, and more.
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The table itself is merely an array of symbols. Each symbol has the

following C structure:

struct EIf64_ Sym {
uint32_t st_name ;
unsigned char st_info ;
unsigned char st_other ;
ui nt16_t st_shndx;
uinté4_t st _value;
uint64_t st_size;

The field st_names an offset into a string table, providing a string name
for the symbolst_shndxontains the ELF sectidhat a symbol resides in, if any.
st valuecont ains the symbol s | ocation in
this would be its address; for arbitrary information, it could take any value. The

remainder of the fields are unused by Bear.

5.13 Reloations

Relocation is the process of connectiggmbol referencesvithin the
binary code with their associategmbols If the compiler or linker must output an
address of a function or data element that does not have-defiakd location in
memory, itinstead outputs a stub value (normally all zeiod)e aforementioned
symbolic reference. The rttime loader must then fix up these stub values with
the correct addresses, which are contained in the symbol table. Information that
ties these stubs to thessociated symbols is placedratocation entries These
entries appear in special relocation sections in the b{oaey per text section that

contains relocationsand the structure is as follows:

struct EIf64_Rela {
uint64_t r_offset;
uinté4_t  r_info;
uinté4 t r_addend;
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The r_offsetfield contains the location in memoof a stub value. The
r_info field contains both the offset to the symdming referenced by this
relocation(contained in the aforementioned symbol table), and information about
how the symbol data should be computed into a final addresddendis then

added onto the final computed value (this field is always zero in the Bear system).

5.2 Implementation

The basicruntimediversificationsystem is similar téhe ideas employed
in ASLR [37. It makes heavy use of the Executable and Linkable Format (ELF)
and the informatioravailablein this format The Bearloader rather than placing
ELF sections into their normahemory locations as defined in the ELF file,
moves all ELF sectionsnto nondeterministigpositions By default these sections
represent thentire code of the binary (ELF section .teat)d the entire set of
predefined data elements (ELF section .data). However, by using standard
compiler flags it is possible to vary the level of granularity down to individual
functions (ffunctionsectionsin gcc/clang) and individual data elementilgta
sectionsin gcc/clang).These flags create one ELF section per each function
(named as.text.fnnamg and one ELF section per data element (named
as.data.varnamg rather than a single text sectiotex) and data sectiondata).
Thus, unlike in ASLR, our unit of diversity is the individual function or individual
data elementFigure 10 shows, at a high level, how the runtime loader might

diversify the functions within a binary:
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Binary

text.main

text.fnl

text.fn2

text.fn3

RAM

main()

Empty Space

fn3()

Empty Space

fn1()

Empty Space

fn2()

é

Figure 10: Example binary and corresponding loader diversification.

After loading into memorythe program segments defined in the ELF
binary, the loaderthen scans the section table. Any section marked as a
PROGBITS section (representing code or data) is riotdéea diversifiableunit.

The loader takes thesmits and moves them to random locasan the process
address space.tlhienperforms this same process to the stack base, as well as any
other OSdefined special variables that reside in the process address space.

Unfortundely, this process of moving sections around in memory breaks
the process control flow. Code and data that refers to other code and data, such as
control flow changesjfip and call instructions) refer to their endpoints via

memory addresses. When thesenogy addresses are changed, the whole process

breaks.
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Section: .text.fn Moved Section: .text.fn

0x100 | push % rbx 0x500 | push % rbx
0x504 | mov (%rax ), % rax

0x104 |mov (%rax ), % rax
0x112 |jmp OxfO (%rip) :> 0x512 |jmp OxfO (%rip)

+0xf0 | é +0xf0 | é
0x202 | pop % rbx 0x602 | pop % rbx
é |é é | é

Figure 11: Control flow within same diversity unit.

The first case is illustrated iAgure 11. In this case, both the referencing
code (thgmp instruction) and the destination are within the sanverdity unit
(in this case, the function calléd). Thanks to the addressing scheme used in the
x86-64 architecture however, this is not a problem! However, the-6X86
architecture introduced a concept knowniregructionpointer based offsetting
This dlows addresses to be referenced based on the current instruction
pointer, %rip, and is designed to ameliorate exactly this issue. When an entire
diversity unit is moved, any references both starting and ending in the same unit
are made based on an off$gim the starting instruction will be the same no
matter where the diversity unit is placed. Thus, the first case is not an issue the

loader has to solviethe architecture has already solved it for us.

Section: .text.fnl

0x100 | push % rbx
0x104 |mov (%rax ), % rax
0x112 |jmp 0x550(%rip)

é | é
Section: .text.fn2 Section: .text.fn2
0x720 | pop % rbx 0x97d5 | pop % rbx
¢ | e — ¢ |eé

Figure 12: Control flow between two different diversity units.
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The second case is illustrated ingEre 12. In this case, the referencing
code (again, thgmp instruction) and the destination address are in two different
diversity units. Instructioqpointer based offsetting has been emitted by the
compiler, but this is improper. When the loader moves the two units to a random
location, the relative difference between their locations will be chandped the
offset used by thgmp will not change! This breaks the process control flow.
Similarly, reference$o global data elements will also be broken. The loader must
resolve these broken references, or the running process will exhibit undefined
behavior when it attempts to utilize a reference.

The process for resolving these references is virtually identicahe
process used for dynamic linkir§ shared librariesThe compiler, when finding
a crosssection function or data reference, generates a stub value instead of the
normal instructiorpointer offset this is therelocation as discussed in section
5.13. With the relocations, the loader can fix up all the references that it broke
when it moved the diversifiable units to nondeterministic locations.

Using this information Program 5illustrates how thdoading process

operates
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Loader:
Read ELF Segments (Code and Data) into memory
Read ELF Symbol table
Read ELF Section table
Read ELF REL(A) sections into array
Associate PROGBITS section with REL(A) section [if
exists]
For each PROGBITS section:
Move PROGBITS code/data to random location:
Via moving the location of its pages
For each symbol within section:
symbol < - newly - moved address
For each relocation with r_offset within section:
r_offset < - newly - moved address
// Do the same loop, but for stack and other elements for
// which relocation is desired.
For each relocation:
memory_at(r_offset) < - SYMBOL_FROM_RELOC(r_info)

Once all of these stepseaperformed, program execution can proceed as normal.
The same process is performed by both the hypervisor and the kernel, with the
only differences being how memory is allocated when the ELF segments are

initially loaded into memory.

5.3 Analysis

This piocess satisfieghree of the core properties of diversification
described inChapter 4 namely that alcode and data is shifted out of position,
with all function entry and exit pointplaced at an unpredictable location.
Specifically, this unpredictabiff has entropy equal to the number of bits
available in the process address space. For Bear running egdha@ghitectures,
this admits td9 bits of entropy corresponding to approximat&§0 billion code
variants This diversification is achieveloly manpulating the location of pages in

the page table structure.
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The page system on x&@l has four levels. The top level, the Page Map
Level 4 Table, has 512 entries, each of which corresponds to a 512 gigabyte
region of memoryi specifically, 512 of the nexevel. The Bearsystem utilizes
the first of these entries to hold the data for user processes. The next level is the
Page Directory Pointer Table, with 512 entries, each of which corresponds to a 1
gigabyte region of memoriy specifically, 512 of the néxevel. That next level is
the Page Directory, with 512 entries, each of which corresponds to a 2 megabyte
region of memory specifically, 512 of the next level. That next level is, finally,
the Page Table. The page table itself contains 512 pages,aehdpage is 4
kilobytes in size.

Each relocatable section begins on a page boundary, and stretches for a
number of pages which cover its entire length. To perform the relocation, these
pages are remapped from their original location to a new, ranezlgn
location in the page table structure.

Due to the use of page tables to perform the relocation, the amount of
entropy gained is somewhat less than the theoretical maximum. As mentioned
above, on the x864 architecture a page is four kilobytes and rexguit2 bits to
address the range of values within a page; thus, the lower 12 bits are unavailable
to the diversifier for the page remapping. The entropy gained by this process,
therefore, is 39 12 =27 bitsfor each relocatable sectiocorresponding t4.34
million variants1 less by three orders of magnitudit still substantially higher

than the 20 bits introduced by the comytitee techniques

5.3.1 Performance Impact
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The runtime transformations do have an impact on the performance of the
system.This impact, however, is only felt on program stgst all the work to
diversify the program is performed by the loader before the program even begins
execution.The hypothesis is thuthat any benchmarks should show minimal
performance degradation whervelisity is enabled. There could be some minor
degradation: code becomes more spread out (potential caching changes), and
rather than instructiopointer based offsetting the compiler instead uses indirect,
registerbased jumps to enable the relocation pssc

The SPEC benchmark suite is currently in the process of being ported to
the Bear system, so SPEC numbers for the-tima transformations are
unavailable at the momerihstead, four tests were developed to benchmark the
diversity changes. The fir$ivo tests are add and multiply: functions are called
which perform a large number of additions and multiplications; these have been
ported fron the AIM9 benchmark suiteéé$] and examine whether diversity will
degrade CPtheavy workloads. The third test ike fork() test, which forks a
process and measures the execution time of the forking; this is a control to make
sure th-datoouno pPpepformance degradati on
final test is the function call test, where a series of fonctions are chosen from
eight random choices and called; this examines whether or not the indirect
registerbased jumps emitted by relocation cause any performance degradation.
The hardware performance counters for reference ticks in the Inte6486

plattorm were used to measure the CPU time spent in each task.
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The system benchmarks were run with and without diversity enabled. For
the add, multiply, and function call tests, no noticeable degradation of
performance was measured by the hardware. For tkedst, however, there was
a 535% performance degradation when diversity was endblelile a fairly
large change, it is exactly what was expected to be seen. This signifies that all of
the performance degradation necessary for enabling diversity relerftont
loaded: it is only seen when starting new processes, and it has minimal effect on

the running process itself.

5.3.2 Code Size Impact

Unlike with compiletime techniques, there is minimal impact on code
size due to the diversity work being perfeed at rustime, after the binary is read
from disk. That said, there is still a small impact: relocated jumps rather than
instructionpointer offsetting is slightly more verbose.

An instructionpointerbased offset requirdve bytes (call instructiomand
offset) anda relocation jump requires 12 bytes (the movabs instruction, the offset,
and the call instruction)There are 1166 call instructions in the Bear hypervisor
and 1334 call instructions in the Bear kernel, resulting in a size increase of 5.6
kilobytes and 6.5 kilobytes, respectivelJhis represents a percentage size
increase of 0.24% and 0.23%, respectivelan extremely minimal disk size
increase, and several orders of magnitude less than the increase created by the

compiletime transformaons.
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Chapter 6: A Hybrid Technique

Unfortunately the runtime diversity transformations described in this
chapterdo not satisfy the thirghroperty of diversityoutlined in Chapted, namely
that all jump offsets within all basiblocks are diversified The addresses are
changed for referencdsetweensections, but notvithin sections. Furthermore,
rememberthat the systemloses 12 potential bits of entropy in the runtime
diversifier due to the constraints of the paging systehe difference betweerv2
and 39 bits of entropy ihree orders of magnitud# variant$ These issues are
resolvedby combining our rusiime and compildgime techniques into a hybrid

modelas illustrated in Figuré3.

filel.c file2.c e filen.c
Compile w/
Diversity
[ Binary 1 ] [ Binary 2 ] [ é ]
Runtime Runtime Runtime
Image Image | | Image Image | | Image Image

Figure 13 Hybrid diversity system.

In this hybrid proces the system is first compiled with the comgilae

padding transformation (described in section 4.1.1) multiple times. Then, when a
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